首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biallelic marker, most commonly single nucleotide polymorphism (SNP), is widely utilized in genetic association analysis, which can be speeded up by estimating allele frequency in pooled DNA instead of individual genotyping. Several methods have shown high accuracy and precision for allele frequency estimation in pools. Here, we explored PCR restriction fragment length polymorphism (PCR–RFLP) combined with microchip electrophoresis as a possible strategy for allele frequency estimation in DNA pools. We have used the commercial available Agilent 2100 microchip electrophoresis analysis system for quantifying the enzymatically digested DNA fragments and the fluorescence intensities to estimate the allele frequencies in the DNA pools. In this study, we have estimated the allele frequencies of five SNPs in a DNA pool composed of 141 previously genotyped health controls and a DNA pool composed of 96 previously genotyped gastric cancer patients with a frequency representation of 10–90% for the variant allele. Our studies show that accurate, quantitative data on allele frequencies, suitable for investigating the association of SNPs with complex disorders, can be estimated from pooled DNA samples by using this assay. This approach, being independent of the number of samples, promises to drastically reduce the labor and cost of genotyping in the initial association analysis.  相似文献   

2.
Robust estimation of allele frequencies in pools of DNA has the potential to reduce genotyping costs and/or increase the number of individuals contributing to a study where hundreds of thousands of genetic markers need to be genotyped in very large populations sample sets, such as genome wide association studies. In order to make accurate allele frequency estimations from pooled samples a correction for unequal allele representation must be applied. We have developed the polynomial based probe specific correction (PPC) which is a novel correction algorithm for accurate estimation of allele frequencies in data from high-density microarrays. This algorithm was validated through comparison of allele frequencies from a set of 10 individually genotyped DNA's and frequencies estimated from pools of these 10 DNAs using GeneChip 10K Mapping Xba 131 arrays. Our results demonstrate that when using the PPC to correct for allelic biases the accuracy of the allele frequency estimates increases dramatically.  相似文献   

3.
Li Z  Gail MH  Pee D  Gastwirth JL 《Human heredity》2002,53(3):114-129
Risch and Teng [Genome Res 1998;8:1273-1288] and Teng and Risch [Genome Res 1999;9:234-241] proposed a class of transmission/disequilibrium test-like statistical tests based on the difference between the estimated allele frequencies in the affected and control populations. They evaluated the power of a variety of family-based and nonfamily-based designs for detecting an association between a candidate allele and disease. Because they were concerned with diseases with low penetrances, their power calculations assumed that unaffected individuals can be treated as a random sample from the population. They predicted that this assumption rendered their sample size calculations slightly conservative. We generalize their partial ascertainment conditioning by including the status of the unaffected sibs in the calculations of the distribution and power of the statistic used to compare the allele frequency in affected offspring to the estimated frequency in the parents, based on sibships with genotyped affected and unaffected sibs. Sample size formulas for our full ascertainment methods are presented. The sample sizes for our procedure are compared to those of Teng and Risch. The numerical results and simulations indicate that the simplifying assumption used in Teng and Risch can produce both conservative and anticonservative results. The magnitude of the difference between the sample sizes needed by their partial ascertainment approximation and the full ascertainment is small in the circumstances they focused on but can be appreciable in others, especially when the baseline penetrances are moderate. Two other statistics, using different estimators for the variance of the basic statistic comparing the allele frequencies in the affected and unaffected sibs are introduced. One of them incorporates an estimate of the null variance obtained from an auxiliary sample and appears to noticeably decrease the sample sizes required to achieve a prespecified power.  相似文献   

4.
Investigation on QTL-marker linkage usually requires a great number of observed recombinations, inferred from combined analysis of phenotypes and genotypes. To avoid costly individual genotyping, inferences on QTL position and effects can instead make use of marker allele frequencies. DNA pooling of selected samples makes allele frequency estimation feasible for studies involving large sample sizes. Linkage studies in outbred populations have traditionally exploited half-sib family designs; within the animal production context, half-sibships provide large families that are highly suitable for DNA pooling. Estimators for QTL position and effect have been proposed that make use of information from flanking markers. We present formulas derived by the delta method for the asymptotic variance of these estimators.  相似文献   

5.
Tung L  Gordon D  Finch SJ 《Human heredity》2007,63(2):101-110
This paper extends gene-environment (G x E) interaction study designs in which the gene (G) is known and the environmental variable (E) is specified to the analysis of 'time-to-event' data, using Cox proportional hazards (PH) modeling. The objectives are to assess whether a random sample of subjects can be used to detect a specific G x E interaction and to study the sensitivity of the power of PH modeling to genotype misclassification. We find that a random sample of 2,100 is sufficient to detect a moderate G x E interaction. The increase in sample size necessary (SSN) to maintain Type I and Type II error rates is calculated for each of the 6 genotyping errors for both dominant and recessive modes of inheritance (MOI). The increase in SSN required is relatively small when each genotyping error rate is less than 1% and the disease allele frequency is between 0.2 and 0.5. The genotyping errors that require the greatest increase in SSN are any misclassification of a subject without the at-risk genotype as having the at-risk genotype. Such errors require an indefinitely large increase in SSN as the disease allele frequency approaches 0, suggesting that it is especially important that subjects recorded as having the at-risk genotype be correctly genotyped. Additionally, for a dominant MOI, large increases in SSN can occur with large disease allele frequency.  相似文献   

6.
The strategy of bulk DNA sampling has been a valuable method for studying large numbers of individuals through genetic markers. The application of this strategy for discrimination among germplasm sources was analyzed through information theory, considering the case of polymorphic alleles scored binarily for their presence or absence in DNA pools. We defined the informativeness of a set of marker loci in bulks as the mutual information between genotype and population identity, composed by two terms: diversity and noise. The first term is the entropy of bulk genotypes, whereas the noise term is measured through the conditional entropy of bulk genotypes given germplasm sources. Thus, optimizing marker information implies increasing diversity and reducing noise. Simple formulas were devised to estimate marker information per allele from a set of estimated allele frequencies across populations. As an example, they allowed optimization of bulk size for SSR genotyping in maize, from allele frequencies estimated in a sample of 56 maize populations. It was found that a sample of 30 plants from a random mating population is adequate for maize germplasm SSR characterization. We analyzed the use of divided bulks to overcome the allele dilution problem in DNA pools, and concluded that samples of 30 plants divided into three bulks of 10 plants are efficient to characterize maize germplasm sources through SSR with a good control of the dilution problem. We estimated the informativeness of 30 SSR loci from the estimated allele frequencies in maize populations, and found a wide variation of marker informativeness, which positively correlated with the number of alleles per locus.  相似文献   

7.
ABSTRACT Estimating black bear (Ursus americanus) population size is a difficult but important requirement when justifying harvest quotas and managing populations. Advancements in genetic techniques provide a means to identify individual bears using DNA contained in tissue and hair samples, thereby permitting estimates of population abundance based on established mark-capture-recapture methodology. We expand on previous noninvasive population-estimation work by geographically extending sampling areas (36,848 km2) to include the entire Northern Lower Peninsula (NLP) of Michigan, USA. We selected sampling locations randomly within biologically relevant bear habitat and used barbed wire hair snares to collect hair samples. Unlike previous noninvasive studies, we used tissue samples from harvested bears as an additional sampling occasion to increase recapture probabilities. We developed subsampling protocols to account for both spatial and temporal variance in sample distribution and variation in sample quality using recently published quality control protocols using 5 microsatellite loci. We quantified genotyping errors using samples from harvested bears and estimated abundance using statistical models that accounted for genotyping error. We estimated the population of yearling and adult black bears in the NLP to be 1,882 bears (95% CI = 1,389-2,551 bears). The derived population estimate with a 15% coefficient of variation was used by wildlife managers to examine the sustainability of harvest over a large geographic area.  相似文献   

8.
Using striped bass (Morone saxatilis) and six multiplexed microsatellite markers, we evaluated procedures for estimating allele frequencies by pooling DNA from multiple individuals, a method suggested as cost-effective relative to individual genotyping. Using moment-based estimators, we estimated allele frequencies in experimental DNA pools and found that the three primary laboratory steps, DNA quantitation and pooling, PCR amplification, and electrophoresis, accounted for 23, 48, and 29%, respectively, of the technical variance of estimates in pools containing DNA from 2-24 individuals. Exact allele-frequency estimates could be made for pools of sizes 2-8, depending on the locus, by using an integer-valued estimator. Larger pools of size 12 and 24 tended to yield biased estimates; however, replicates of these estimates detected allele frequency differences among pools with different allelic compositions. We also derive an unbiased estimator of Hardy-Weinberg disequilibrium coefficients that uses multiple DNA pools and analyze the cost-efficiency of DNA pooling. DNA pooling yields the most potential cost savings when a large number of loci are employed using a large number of individuals, a situation becoming increasingly common as microsatellite loci are developed in increasing numbers of taxa.  相似文献   

9.
Gene diversity is sometimes estimated from samples that contain inbred or related individuals. If inbred or related individuals are included in a sample, then the standard estimator for gene diversity produces a downward bias caused by an inflation of the variance of estimated allele frequencies. We develop an unbiased estimator for gene diversity that relies on kinship coefficients for pairs of individuals with known relationship and that reduces to the standard estimator when all individuals are noninbred and unrelated. Applying our estimator to data simulated based on allele frequencies observed for microsatellite loci in human populations, we find that the new estimator performs favorably compared with the standard estimator in terms of bias and similarly in terms of mean squared error. For human population-genetic data, we find that a close linear relationship previously seen between gene diversity and distance from East Africa is preserved when adjusting for the inclusion of close relatives.  相似文献   

10.
Xiao M  Latif SM  Kwok PY 《BioTechniques》2003,34(1):190-197
Strategies for identifying genetic risk factors in complex diseases by association studies require the comparison of allele frequencies of numerous SNPs between affected and control populations. Theoretically, hundreds of thousands of SNP markers across the genome will have to be genotyped in these studies. Genotyping SNPs one sample at a time is extremely costly and time consuming. To streamline whole genome association studies, some have proposed to screen SNPs by pooling the DNA samples initially for allele frequency determination and perform individual genotyping only when there is a significant discrepancy in allele frequencies between the affected and control populations. Here we describe a new method for determining the allele frequency of SNPs in pooled DNA samples using a two-color primer extension assay with real-time monitoring of fluorescence polarization (named kinetic FP-TDI assay). By comparing the ratio of the rate of incorporation of the two allele-specific dye-terminators, one can calculate the relative amounts of each allele in the pooled sample. The accuracy of allele frequency determination with pooled samples is within 3.3 +/- 0.8% of that determined by genotyping individual samples that make up the pool.  相似文献   

11.
At present, the cost of genotyping single nucleotide polymorphisms (SNPs) in large numbers of subjects poses a formidable problem for molecular genetic approaches to complex diseases. We have tested the possibility of using primer extension and denaturing high performance liquid chromatography to estimate allele frequencies of SNPs in pooled DNA samples. Our data show that this method should allow the accurate estimation of absolute allele frequencies in pooled samples of DNA and also of the difference in allele frequency between different pooled DNA samples. This technique therefore offers an efficient and cheap method for genotyping SNPs in large case-control and family-based association samples.  相似文献   

12.
As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different ancestries will be studied to increase power, fine map association signals, and generalize association results to additional populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian, Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT and CHB).  相似文献   

13.
Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N2, where N is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently, the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in relationship. However, even using human population samples, low sampling variance is possible with high N.  相似文献   

14.
Many candidate gene association studies have evaluated incomplete, unrepresentative sets of single nucleotide polymorphisms (SNPs), producing non-significant results that are difficult to interpret. Using a rapid, efficient strategy designed to investigate all common SNPs, we tested associations between schizophrenia and two positional candidate genes: ACSL6 (Acyl-Coenzyme A synthetase long-chain family member 6) and SIRT5 (silent mating type information regulation 2 homologue 5). We initially evaluated the utility of DNA sequencing traces to estimate SNP allele frequencies in pooled DNA samples. The mean variances for the DNA sequencing estimates were acceptable and were comparable to other published methods (mean variance: 0.0008, range 0-0.0119). Using pooled DNA samples from cases with schizophrenia/schizoaffective disorder (Diagnostic and Statistical Manual of Mental Disorders edition IV criteria) and controls (n=200, each group), we next sequenced all exons, introns and flanking upstream/downstream sequences for ACSL6 and SIRT5. Among 69 identified SNPs, case-control allele frequency comparisons revealed nine suggestive associations (P<0.2). Each of these SNPs was next genotyped in the individual samples composing the pools. A suggestive association with rs 11743803 at ACSL6 remained (allele-wise P=0.02), with diminished evidence in an extended sample (448 cases, 554 controls, P=0.062). In conclusion, we propose a multi-stage method for comprehensive, rapid, efficient and economical genetic association analysis that enables simultaneous SNP detection and allele frequency estimation in large samples. This strategy may be particularly useful for research groups lacking access to high throughput genotyping facilities. Our analyses did not yield convincing evidence for associations of schizophrenia with ACSL6 or SIRT5.  相似文献   

15.
Selective spore trapping and molecular genotyping methods were employed to examine potential long-distance gene flow among Caribbean populations of the common mushroom Schizophyllum commune. Spore-trap samples from five locations were analysed using restriction fragment polymorphisms of five enzymatically amplified gene regions. Successful trappings suggested S. commune spores to be abundant in the air, with an estimated sedimentation rate of approximately 18 spores/m2/h. High levels of genetic diversity characterized the spore-trap samples, with as many as 12 alleles observed at a single locus (chitin synthase) over all samples. In addition, spore-trap samples showed significant among sample heterogeneity including geographical population substructure. The ribosomal DNA (rDNA) intergenic spacer displayed the greatest allele frequency differences among samples, clearly separating the samples into those possessing only a South American-type allele and those segregating for both North and South American-type alleles. The molecular variation provided no clear evidence for dispersal over large, aquatic barriers within the Caribbean region, and instead suggested that spore-trapping experiments are primarily reflective of the local, established population.  相似文献   

16.
The effect of sample duration on the quantification of stream drift   总被引:1,自引:0,他引:1  
1. We performed computer simulations and a field experiment to determine the effect that sample duration and, thus, sample volume had on estimates of drift density and sample variance. 2. In computer simulations, when the spatial arrangement of individuals in the water column approximated a random and a contagious-random distribution, estimated mean drift density was not significantly affected by sample duration, but sample variance decreased curvilinearly as sample duration increased. 3. Similar results were obtained in field experiments in habitats of high and low water velocity. 4. Our findings from an Albertan stream indicate that the relationship between sample variance (i.e. coefficient of variation) and duration of drift samples is curvilinear. This relationship affected the number of samples required to achieve a specific level of precision (i.e. a standard error within 10% of the mean). For estimates in low and high current velocities, sample variation was halved by increasing the duration of sample collections from 10 to 20 min. The increased precision obtained with samples of 20 min duration reduced the amount of drift material that needed to be processed by approximately 50% compared with an equivalent 10% level of precision for samples of 10 min duration. This reduction in the number of samples required to obtain a given level of precision has important consequences to the cost of processing drift samples. 5. Thus to optimize studies of stream invertebrate drift, both in terms of sample precision and processing effort, researchers must consider the effect that sample volume has on the variance of drift density estimates. Because researchers generally use drift nets with similar-sized apertures (>300cm2), the problem for specific field applications becomes one of optimizing sample duration relative to variance estimates for drift density.  相似文献   

17.
Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a “gray zone” where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.  相似文献   

18.
Two-stage designs in case-control association analysis   总被引:1,自引:0,他引:1       下载免费PDF全文
Zuo Y  Zou G  Zhao H 《Genetics》2006,173(3):1747-1760
DNA pooling is a cost-effective approach for collecting information on marker allele frequency in genetic studies. It is often suggested as a screening tool to identify a subset of candidate markers from a very large number of markers to be followed up by more accurate and informative individual genotyping. In this article, we investigate several statistical properties and design issues related to this two-stage design, including the selection of the candidate markers for second-stage analysis, statistical power of this design, and the probability that truly disease-associated markers are ranked among the top after second-stage analysis. We have derived analytical results on the proportion of markers to be selected for second-stage analysis. For example, to detect disease-associated markers with an allele frequency difference of 0.05 between the cases and controls through an initial sample of 1000 cases and 1000 controls, our results suggest that when the measurement errors are small (0.005), approximately 3% of the markers should be selected. For the statistical power to identify disease-associated markers, we find that the measurement errors associated with DNA pooling have little effect on its power. This is in contrast to the one-stage pooling scheme where measurement errors may have large effect on statistical power. As for the probability that the disease-associated markers are ranked among the top in the second stage, we show that there is a high probability that at least one disease-associated marker is ranked among the top when the allele frequency differences between the cases and controls are not <0.05 for reasonably large sample sizes, even though the errors associated with DNA pooling in the first stage are not small. Therefore, the two-stage design with DNA pooling as a screening tool offers an efficient strategy in genomewide association studies, even when the measurement errors associated with DNA pooling are nonnegligible. For any disease model, we find that all the statistical results essentially depend on the population allele frequency and the allele frequency differences between the cases and controls at the disease-associated markers. The general conclusions hold whether the second stage uses an entirely independent sample or includes both the samples used in the first stage and an independent set of samples.  相似文献   

19.
Yang HC  Pan CC  Lu RC  Fann CS 《Genetics》2005,169(1):399-410
In the post-genome era, disease gene mapping using dense genetic markers has become an important tool for dissecting complex inheritable diseases. Locating disease susceptibility genes using DNA-pooling experiments is a potentially economical alternative to those involving individual genotyping. The foundation of a successful DNA-pooling association test is a precise and accurate estimation of allele frequency. In this article, we propose two new adjustment methods that correct for preferential amplification of nucleotides when estimating the allele frequency of single-nucleotide polymorphisms. We also discuss the effect of sample size when calibrating unequal allelic amplification. We conducted simulation studies to assess the performance of different adjustment procedures and found that our proposed adjustments are more reliable with respect to the estimation bias and root mean square error compared with the current approach. The improved performance not only improves the accuracy and precision of allele frequency estimations but also leads to more powerful disease gene mapping.  相似文献   

20.
Sample size considerations in genetic polymorphism studies.   总被引:6,自引:0,他引:6  
C B-Rao 《Human heredity》2001,52(4):191-200
OBJECTIVES: Molecular studies for genetic polymorphisms are being carried out for a number of different applications, such as genetic disorders in different populations, pharmacogenomics, genetic identification of ethnic groups for forensic and legal applications, genetic identification of breed/stock in animals and plants for commercial applications and conservation of germ plasm. In this paper, for a random sampling scheme, we address two questions: (A) What should be the minimum size of the sample so that, with a prespecified probability, all alleles at a given locus (or haplotypes at a given set of loci) are detected? (B) What should be the sample size so that the allele frequency distribution at a given locus (or haplotype frequency distribution at a given set of loci) is estimated reliably within permissible error limits? METHODS: We have used combinatorial probabilistic arguments and Monte Carlo simulations to answer these questions. RESULTS: We found that the minimum sample size required in case A depends mainly on the prespecified probability of detecting all alleles, while in case B, it varies greatly depending on the permissible error in estimation (which will vary with the application). We have obtained the minimum sample sizes for different degrees of polymorphism at a locus under high stringency, as well as a relaxed level of permissible error. We present a detailed sampling procedure for estimating allele frequencies at a given locus, which will be of use in practical applications. CONCLUSION: Since the sample size required for reliable estimation of allele frequency distribution increases with the number of alleles at the locus, there is a strong case for using biallelic markers (like single nucleotide polymorphisms) when the available sample size is about 800 or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号