首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-dividing STO mouse fibroblasts have been used for some time as feeder cells for maintaining certain embryonal carcinoma cells in an undifferentiated state. We report here that medium conditioned by these feeders can inhibit embryonal carcinoma (ec) cell differentiation induced either by removal from feeders, or, in the case of cells not normally requiring a feeder layer, by retinoic acid treatment.  相似文献   

2.
The appearance of differentiated cells in embryonal carcinoma (EC) cultures can be inhibited by culturing the cells on fibroblast feeder layers. To determine whether or not feeder layers act by increasing the probability of stem cell renewal, growth and differentiation were monitored in cultures of F9 (subclone OTF9 -63) EC cells exposed to retinoic acid (RA) in either the presence or absence of feeder layers. By measuring the fraction of laminin-positive TROMA 1-positive or alkaline phosphatase-negative cells, it was determined that the frequency of differentiated cells in RA-treated F9 cultures was reduced by 70-80% when cells were cultured on fibroblast feeder layers instead of gelatin-coated dishes. Experiments in which EC cells were cultured in close proximity to a feeder layer demonstrated that cell-cell contact was required for maximal inhibition of differentiation. The probability of stem cell renewal was determined by measuring the number of colony-forming cells in RA-treated cultures as a function of time. Analysis of the data demonstrated that the probabilities of stem cell renewal were 0.5 and 0.25 during the first and second 48 h periods, respectively, following addition of RA for cells cultured without feeder layers. Cultures maintained on feeder layers exhibited a stem cell renewal probability of 0.72. Thus, feeder layers reduce the frequency of differentiated cells in RA-treated cultures by increasing the probability of stem cell renewal. Determining the mechanism by which feeder layers counteract the effect of a chemically defined differentiation inducer should help to uncover the processes that regulate the probability of stem cell renewal.  相似文献   

3.
Culture supernatants from several human leukemic T cell lines were found to contain a macrophage activating factor which enhanced hydrogen peroxide release from human peripheral blood monocyte-derived macrophages. The macrophage activating factor from a T cell line, CCRF-CEM, was characterized biochemically and compared with interferon-gamma, which is also an immunological product of T cells and has a potent macrophage activating activity. In contrast to interferon-gamma, the macrophage activating factor in the culture supernatants bound to an anion exchanger and did not adsorb onto concanavalin A gel. Culture supernatants and active fractions from chromatographies were essentially devoid of anti-viral activity. Anti-human interferon-gamma monoclonal antibody also failed to neutralize the macrophage activating factor from CCRF-CEM. MAF was eluted in the fractions with molecular weight of 40,000 to 60,000 on gel filtration in the presence of a detergent and a salt. MAF was partially purified to about 1,300-fold by the methods described above: chromatography with anion exchangers and gel filtration. It was concluded that MAF from CCRF-CEM was biochemically and immunologically different from interferon-gamma.  相似文献   

4.
5.
A substance which inhibits the in vitro multiplication of 3 cell strains, 37 RC, KB and NCTC clone 929, was characterized in the sheep pineal gland and partially purified using three successive chromatography techniques, respectively on Sephadex G-25, CM-cellulose and Biogel P 60 columms. The sheep cerebral cortex and liver also contain, but at much lower concentration than in the pineal, substance(s) that behave in different tests like the factor isolated from the pineal. The nature of the antimitotic substance from the pineal is as yet unknown. It is not destroyed by treatment with proteolytic enzymes, nor by boiling with 6 M HCl. It was established that it is different from the known antiblastic drugs such as Daunomycin and Methotrexate and from some active substances known to be present in the pineal, such as melatonin, serotonin and norepinephrine, which, in the same conditions, did not show any antimitotic activity. It was shown that when the concentration of the pineal factor in the culture medium was high enough (10 μg/ml), the inhibition of the KB cells multiplication was complete and irreversible. Microscopic examination of the treated cells showed that the morphological alteration was rapid (3–6 h) and deep, with shrinkage of both cytoplasm and nucleus, while the with antiblastic drugs, morphological alteration proceeded slower (1–3 days) and appeared less pronounced.  相似文献   

6.
Human lymphocytes, isolated from peripheral blood, were cultured for 48 hr in a defined medium containing 10 mg/ml bovine serum albumin and phytohemagglutinin. A lymphokine which inhibits collagen synthesis by cultured human dermal fibroblasts was purified from the lymphocyte incubation medium by successive steps of ammonium sulfate precipitation, gel filtration chromatography, and isoelectric focusing. Good recovery of this collagen synthesis inhibitory factor (CSIF) was obtained and a factor with an approximate molecular weight of 55,000 and a pI of 6.2 was isolated. The purification of the factor should permit further studies on its mechanism of action.  相似文献   

7.
Embryonal carcinoma cells are useful in the study of embryogenesis and development, and their differentiation into neurons serves as a model of neuronal development. Retinoic acid was used to differentiate P19S18O1A1 embryonal carcinoma cells into neuronal, glial, and fibroblast-like cells and the phenotype of the neuronal population was examined. Neuron-specific enolase was present in the neuronal cells, suggesting that these neurons had reached some degree of maturity. A population (approximately 70%) of the neurons showed positive immunocytochemistry for tyrosine hydroxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase, three enzymes in the pathway of catecholamine synthesis. Therefore a population of the neurons appeared to be adrenergic. These neurons also showed a low level of histofluorescence for endogenous catecholamines and exhibited an exogenous catecholamine reuptake system. In order to determine the phenotype of other neuron-like cells found to be negative for the adrenergic properties examined, immunocytochemistry for neuropeptides and neurotransmitters known to coexist within central neurons was performed. Serotonin, vasoactive intestinal peptide, glutamic acid decarboxylase, and choline acetyltransferase were all absent from retinoic acid-treated P19S18O1A1 neuronal cultures. These studies, along with those that compare the effects of retinoic acid and other growth modulators on neuronal differentiation of embryonal carcinoma cells, should aid in the understanding of neuronal induction and development in vivo.  相似文献   

8.
Transglutaminase activity and embryonal carcinoma cell differentiation   总被引:1,自引:0,他引:1  
Murine embryonal carcinoma (EC) cells induced to differentiate by retinoic acid (RA) modulate transglutaminase (TGase) activity shortly after exposure to the inducer. Compounds that inhibit TGase enzyme activity in vitro can successfully block RA induced EC cell differentiation in culture. These observations suggest that TGase may play a role in mediating RA induced EC cell differentiation.  相似文献   

9.
We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs.  相似文献   

10.
Induced muscle differentiation in an embryonal carcinoma cell line.   总被引:16,自引:7,他引:16       下载免费PDF全文
Cells of the teratocarcinoma-derived line P19S1801A1 (01A1) are pluripotent embryonal carcinoma cells and can be induced to differentiate when aggregated and exposed to dimethyl sulfoxide. Many nonneural cell types appear in dimethyl sulfoxide-treated cultures, cardiac and skeletal muscle being the most easily identified. We have used immunofluorescence procedures with monoclonal antibodies directed against muscle myosin to confirm and quantitate the number of muscle cells formed. A monoclonal antibody reactive with an embryonal carcinoma-specific surface antigen was used to confirm the disappearance of undifferentiated cells after dimethyl sulfoxide treatment. Cardiac muscle cells developed within 4 to 5 days of drug exposure, but skeletal muscle cells did not become evident until 7 to 8 days. We have isolated a mutant cell line (D3) which appears to be incapable of muscle development but which does form neurons and glial cells when exposed to high retinoic acid concentrations. We propose that this system will be useful for investigation of the means by which pluripotent cells become committed to development along the striated muscle lineages.  相似文献   

11.
Murine embryonal carcinoma cells (EC) can be induced to differentiate by a variety of chemical agents, including retinoid acid (RA) and dimethyl acetamide (DMA). However, it is not known how these agents exert their effects. In this study we demonstrate that murine EC cells can also be induced to differentiate by ouabain at concentrations which inhibit Na+, K+-ATPase activity as measured by inhibition of 86Rb+ uptake. Since the pharmacologic action of ouabain is thought to be specific, we investigated the role of Na+, K+-ATPase inhibition and specific metabolic consequences of this inhibition in the induction of EC differentiation, and explored whether this might be a common mode of action for a variety of structurally diverse inducers. Although the Na+, K+-ATPase maintains ion gradients in cells, our studies failed to demonstrate a consistent role for alterations of ion flux or ion concentration on the differentiation process. Ouabain inhibited cell growth, but a direct correlation between the degree of growth inhibition and the extent of differentiation could not be demonstrated. There was also no evidence that RA or DMA induces differentiation by inhibiting the Na+, K+-ATPase. The mechanism of ouabain induction may be mediated by some alternative consequence of Na+, K+-ATPase inhibition, but it appears to be specific for that inducer and cannot be generalized to that of other inducers of EC differentiation.  相似文献   

12.
In the current study, we have addressed the role of interferons (IFNs) in controlling the differentiation of pluripotent P19 embryonal carcinoma (EC) cells. Blocking IFN activity in the culture medium of differentiating cells with antibodies leads to a strong decrease in the degree of differentiation. The antibodies are active for a relatively short time. During this time, IFN-beta mRNA can be detected in the differentiating cells, as can increases of IFN stimulation response element-binding activity and NF-KB. The timing of IFN action also coincides with the accumulation of cytoplasmic double-stranded RNA (dsRNA) and with a drop in dsRNA unwindase-modificase activity. A model for the involvement of autoinduction of IFN by intracellular dsRNA in the control of differentiation in this system is presented.  相似文献   

13.
Curcumin-induced differentiation of mouse embryonal carcinoma PCC4 cells.   总被引:5,自引:0,他引:5  
Curcumin, a natural component of turmeric extracted from the rhizomes of Curcuma longa, is known to exhibit a number of biological properties. In the present study, curcumin, at low concentration, was shown to induce differentiation in embryonal carcinoma cell line PCC4. In response to curcumin, PCC4 cells ceased to proliferate and showed cell cycle arrest at G1 phase after 4 hours of treatment, followed by their differentiation which is characterized by increase of nuclear/cytoplasmic ratio. The expression of hsp 70 was also seen upon 8 h of curcumin treatment, and it remained constant up to 48 h. Differentiated cells also expressed a series of differentiation markers such as lamin A, well-established actin, and keratin cytoskeleton. We used mRNA differential display analysis to identify the genes that are regulated during curcumin-induced differentiation of PCC4 cells. We cloned and sequenced three partial cDNAs that were differentially expressed in normal and differentiated cells. Sequence comparison of one downregulated cDNA (Al) has shown homology to a gene present on mouse chromosome five, while the two upregulated cDNA (C1 and C7) are homologous to several mouse ESTs clones from organs of mesodermal origin. We have identified the full-length coding sequence of the Cl fragment with a putative amino acid sequence. Tissue-specific Northern with RNA from adult mouse organs with the C1 fragment alone showed hybridization with mRNA from several tissues, whereas the same Northern with only the coding sequence showed expression of C1 gene mainly in the adult kidney. Homology search revealed that C1 sequence is part of the 3' UTR and may be common to several genes expressed in many tissues. Thus, curcumin appears to differentiate embryonal carcinoma cell PCC4, and one of the upregulated genes seems to be expressed mainly in the adult kidney.  相似文献   

14.
The cell surface proteins of teratocarcinoma-derived embryonal carcinoma cells (ECC), of parietal endoderm (Pys-2 and F9-AC cl 9), and of fibroblasts (OTT6050f) were radioiodinated by a lactoperoxidase method and analyzed by two-dimensional gel electrophoresis. The combined electrophoretic profiles of proteins from a number of ECC lines allowed the determination of eight ECC-unique polypeptides. Parietal endoderm and fibroblast expressed their own unique polypeptides. The two parietal endoderm-specific polypeptides are identical to the subunits of laminin. Retinoic acid-induced differentiation of one ECC line (F9) resulted in the disappearance of polypeptides specific for ECC and the appearance of those specific for the parietal endoderm.  相似文献   

15.
When P19 embryonal carcinoma (EC) cells were cocultured with cells from one of several established visceral-endoderm-like cell lines, the EC cells were rapidly induced to aggregate and differentiate, into cell types including mesoderm-derived cardiac and skeletal muscle. Neither parietal-endoderm- nor mesoderm-like cell lines induced aggregation or differentiation of EC cells in coculture, although a cell line with both parietal and visceral endoderm characteristics induced aggregation but not differentiation. Also, without the feeder cells aggregates of P19 failed to differentiate, provided that serum in the culture medium had been previously passed over dextran-coated charcoal to remove lipophilic substances, which may include endogenous retinoids. All experiments were carried out using serum treated in this way. Taken together, the results demonstrated that aggregation was necessary, but not sufficient, to make P19 EC cells differentiate. Direct contact between the two cell types was not necessary, since even when separated by an agar layer in cocultures, aggregates of P19 still differentiated. Medium conditioned by cells of the END-2 line, a visceral-endoderm-like derivative of P19, was particularly potent in inducing endodermal and mesodermal differentiation of single P19 aggregates, confirming the involvement of a diffusible factor secreted specifically by visceral-endoderm-like cells in this process.  相似文献   

16.
A myelomonocytic leukaemia cell line, WEHI-3, releases into its growth medium factors which stimulate the development of pluripotential cells, granulocyte/macrophage progenitor cells, megakaryocytic and erythroid progenitor cells. Also present is a factor which is essential for the continued proliferation in vitro of a variety of haemopoietic precursor cell lines of a granulocytic nature (FDC-P cells). Characterization of this growth factor has demonstrated that it is a glycoprotein of apparent Mr 25 800, in which the carbohydrate component appears to be important for activity. After several purification steps, there is an increase in specific activity of approx. 4000-fold over the starting material. At each stage of purification, the factor necessary for the proliferation of FDC-P cells 'co-purifies' with activity which stimulates the proliferation and development of normal multipotential haemopoietic cells as well as megakaryocytic, erythroid and granulocytic committed progenitor cells. This 'co-purification' occurs to the extent that the multilineage stimulating factor and the FDC-P growth factor can be eluted from the same region of sodium dodecyl sulphate/polyacrylamide gels. Thus, evidence so far, using different starting methods and purification regimes, suggests that one molecule may have multiple activities on diverse cell types.  相似文献   

17.
18.
19.
Leukemia inhibitory factor (LIF) is a cytokine that exhibits proliferation, survival and differentiation in a wide range of cell types. Here we show that LIF potentiates retinoic acid-mediated neural induction in pluripotent P19 embryonal carcinoma cells. This activity of LIF was demonstrated by a profounded neural morphology followed by increased expression of neural-specific proteins (N-CAM, III beta-tubulin, and GAP-43), up-regulation of early neural lineage-specific gene Mash-1, and down-regulation of early endoderm-specific genes -fetoprotein and GATA-4. Moreover, LIF also slows growth and increases the level of apoptosis in differentiating cells.  相似文献   

20.
P19 embryonal carcinoma cells can be induced to differentiate with a pulse of only 4 hr in retinoic acid (RA). The efficiency of RA-induced differentiation is independent of the position of P19 cells in the cell cycle but is critically dependent on the ratio between the number of cells and the number of moles of RA in the culture medium. P19 cultures at lower cell density are more efficiently induced to differentiate than cultures containing cells at higher cell densities. This effect is not mediated by cell-to-cell contact but may be related to the rapid metabolism of RA by the cells. Individual clones of differentiating P19 cells can develop into at least three different cell types suggesting that each cell in the population of embryonal carcinoma cells retains pluripotency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号