首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Aromatic l -amino acid decarboxylase (AAAD) is required for the synthesis of catecholamines, serotonin, and the trace amines. We found that the protein kinase C activator phorbol 12-myristate 13-acetate administered intracerebroventricularly transiently increased AAAD activity by 30–50% over control values within ∼30 min in the striatum and midbrain of the mouse. The enzyme increase was manifested as an apparent increase of V max with little change of K m for either l -3,4-dihydroxyphenylalanine or pyridoxal phosphate. Chelerythrine, a protein kinase C inhibitor, prevented the phorbol ester-induced increase of AAAD. Moreover, okadaic acid, a serine/threonine-selective protein phosphatase 1 and 2A inhibitor, also increased AAAD activity in the mouse striatum and midbrain. Taken together, these observations suggest that protein kinase C-mediated pathways modulate AAAD activity in vivo.  相似文献   

2.
Abstract: Aromatic L-amino acid decarboxylase (AAAD) activity is enhanced in the striatum of control and MPTP-treated mice after administration of a single dose of the dopamine receptor antagonists haloperidol, sulpiride, and SCH 23390. MPTP-treated mice appear more sensitive to the antagonists, i.e., respond earlier and to lower doses of antagonists than control mice. The rise of AAAD activity induced by the antagonists is prevented by pretreatment with cycloheximide. The apparent K m values for L-3,4-dihydroxyphenylalanine (L-DOPA) and pyridoxal 5-phosphate appear unchanged after treatment with the antagonists. Increased AAAD activity was observed also after subchronic administration of dopamine receptor antagonists or treatment with reserpine. A single dose of a selective dopamine receptor agonists had no effect on AAAD activity. In contrast, administration of L-DOPA, quinpirole, or SKF 23390 for 7 days lowers AAAD activity in the striatum. We conclude that AAAD is modulated in striatum via dopaminergic receptors.  相似文献   

3.
Abstract: Aromatic L-amino acid decarboxylase catalyzes the biosynthesis of the neurotransmitters dopamine and serotonin. This enzyme is also expressed in nonneuronal tissues. Two reported cDNA sequences show that the pheochromocytoma message differs from the liver message only at the 5'untranslated region. We present the complete exonal organization and promoter sequences of the rat gene encoding this enzyme. The rat aromatic L-amino acid decarboxylase gene is composed of two promoters and 16 exons spanning more than 80 kb in the genome. The first exon carries the majority of the 5'untranslated sequence of the liver cDNA, and the second exon carries that of the pheochromocytoma cDNA. In the third exon, there are two alternatively utilized splicing acceptors specific to the first and second exons. Therefore, both alternative promoter usage and alternative splicing are operative for the differential expression of this gene. The sequence of each promoter region shows putative binding sites for octamer factors and AP-2.  相似文献   

4.
The concentration of p-tyramine in the rat striatum was increased significantly by intraperitoneal injection of phenelzine (5 or 100 mg/kg). Unlike other monoamine oxidase (MAO) inhibitors, phenelzine had no effect on p-tyramine levels in the first 1-2 h following injection. The high dose of phenelzine increased the p-tyramine levels much more than the low dose. In addition, the high dose of phenelzine increased striatal p-tyrosine levels significantly 12 h after injection. Further studies showed that phenelzine inhibited the tyrosine aminotransferase activity of rat liver homogenates; the IC50 was 50 microM. Phenelzine also inhibited the aromatic L-amino acid decarboxylase activity of rat brain homogenate with an IC50 of 25 microM. Following intraperitoneal injection of 100 mg/kg phenelzine, the initial concentration of phenelzine in the striatum appears to be high enough to inhibit aromatic L-amino acid decarboxylase. It is suggested that the multiple enzyme inhibition caused by administration of high doses of phenelzine accounts for its unusual effects on striatal p-tyramine levels compared with other MAO inhibitors, i.e., its initial lack of effect on p-tyramine levels followed later by very large increases in p-tyramine levels.  相似文献   

5.
Aromatic L-amino acid decarboxylase was purified from rat kidney to homogeneity, as judged by polyacrylamide gel electrophoresis, in the presence and absence of sodium dodecyl sulfate (SDS). The final preparation showed an activity of 3,4-dihydroxyphenylalanine (dopa) decarboxylation of approximately 11,000 nmol/min/mg of protein at 37 degrees C. The purified enzyme also catalyzed the decarboxylation of 5-hydroxytryptophan, tyrosine, tryptophan, and phenylalanine. The enzyme appeared to be composed of two identical subunits, each possessing a molecular weight of 48,000. The isoelectric point of the enzyme was estimated to be 6.7 in the presence of 8 M urea and 5.60-5.85 in its absence. To examine the identity of aromatic L-amino acid decarboxylase from various tissues, a monoclonal antibody directed against the enzyme from rat kidney was prepared. Immunotitration and analysis by antibody-affinity chromatography followed by SDS-polyacrylamide gel electrophoresis revealed that the enzymes from the striatum, adrenal medulla, pineal gland, liver, and kidney were indistinguishable with respect to immunological cross-reactivity and molecular size.  相似文献   

6.
Aromatic L-amino acid decarboxylase (AAAD) activity of rat retina increases when animals are placed in a lighted environment from the dark. The increase of activity can be inhibited by administering the selective dopamine D1 receptor agonist SKF 38393, but not the selective D2 agonist quinpirole, or apomorphine. Conversely, in the dark, enzyme activity can be enhanced by administering the selective D1 antagonist SCH 23390 or haloperidol, but not the selective D2 antagonist (-)-sulpiride. Furthermore, in animals exposed to room light for 3 h, the D1 agonist SKF 38393 reduced retinal AAAD activity, and this effect was prevented by prior administration of SCH 23390. In contrast, quinpirole had little or no effect when administered to animals in the light. Kinetic analysis indicated that the apparent Vmax for the enzyme increases with little change in the apparent Km for the substrate 3,4-dihydroxyphenylalanine or the cofactor pyridoxal-5'-phosphate. We suggest that dopamine released in the dark tonically occupies D1 receptors and suppresses AAAD activity. When the room light is turned on, D1 receptors are vacated and selective D1 agonists can either prevent the rise of AAAD or reverse light-enhanced AAAD activity.  相似文献   

7.
Previous studies have shown that the injection of 5-hydroxytryptamine (5-HT) into the third ventricle of rats on the afternoon of proestrus increases glutamic acid decarboxylase (GAD) activity in the preoptic area and the hypothalamus. In the present report we examine the adenylate cyclase-cyclic AMP (cAMP) system as mediator of that effect. The increase in GAD activity induced by intraventricular injection of 5-HT was completely blocked by injecting an antiserum against cAMP into the third ventricle 30 min earlier, whereas an injection of serum from normal rabbits was ineffective. On the contrary, activation of adenylate cyclase activity by intraventricular injection of forskolin increased GAD activity, an effect that was also blocked by anti-cAMP serum. Anti-cAMP serum also lowered GAD activity in the preoptic area and hypothalamus when injected on the morning of proestrus but not when injected in the afternoon, when the values of GAD activity were already low. The results suggest that a cAMP mechanism may be involved in the changes in preoptic-area and hypothalamic GAD activity such as the rise in enzyme activity induced by intraventricular injection of 5-HT.  相似文献   

8.
The effect of some selective monoamine oxidase (MAO) inhibitors on aromatic L-amino acid decarboxylase (AADC) gene expression in PC12 cells has been examined. Irreversible MAO B inhibitors [(-)-deprenyl, pargyline, and MDL 72,974A] stimulated AADC gene expression, whereas a selective irreversible MAO A inhibitor (clorgyline) and a reversible MAO B inhibitor (Ro 19-6327) had no effect. Because there is no apparent MAO B activity in PC12 cells, it is postulated that there is a novel site of action for these MAO B inhibitors and that the pharmacological profile of this site matches that of neuroprotective MAO B inhibitors. Finally, it is suggested that the stimulation of AADC gene expression may be relevant to the antiparkinsonian effects of MAO B inhibitors.  相似文献   

9.
Decarboxylation of phenylalanine by aromatic L-amino acid decarboxylase (AADC) is the rate-limiting step in the synthesis of 2-phenylethylamine (PE), a putative modulator of dopamine transmission. Because neuroleptics increase the rate of accumulation of striatal PE, these studies were performed to determine whether this effect may be mediated by a change in AADC activity. Administration of the D1 antagonist SCH 23390 at doses of 0.01-1 mg/kg significantly increased rat striatal AADC activity in an in vitro assay (by 16-33%). Pimozide, a D2-receptor antagonist, when given at doses of 0.01-3 mg/kg, also increased AADC activity in the rat striatum (by 25-41%). In addition, pimozide at doses of 0.3 and 1 mg/kg increased AADC activity in the nucleus accumbens (by 33% and 45%) and at doses of 0.1, 0.3, and 1 mg/kg increased AADC activity in the olfactory tubercles (by 23%, 30%, and 28%, respectively). Analysis of the enzyme kinetics indicated that the Vmax increased with little change in the Km with L-3,4-dihydroxyphenylalanine as substrate. The AADC activity in the striatum showed a time-dependent response after the administration of SCH 23390 and pimozide: the activity was increased within 30 min and the increases lasted 2-4 h. Inhibition of protein synthesis by cycloheximide (10 mg/kg, 0.5 h) had no effect on the striatal AADC activity or on the increases in striatal AADC activity produced by pimozide or SCH 23390. The results indicate that the increases in AADC activity induced by dopamine-receptor blockers are not due to de novo synthesis of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract: Intracerebroventricular administration of N6, 2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time-dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A.  相似文献   

11.
Aromatic L-amino acid decarboxylase (AAAD), an enzyme required for the synthesis of catecholamines, indoleamines, and trace amines, is rapidly activated by cyclic AMP-dependent pathways in striatum and midbrain in vivo, suggesting enzyme phosphorylation. We now report that the catalytic subunit of cyclic AMP-dependent protein kinase (PKA) directly phosphorylated AAAD immunoprecipitated from homogenates prepared from the mouse striatum and midbrain in vitro. Under the same phosphorylation conditions, the catalytic subunit of PKA also phosphorylated a recombinant AAAD protein expressed in Escherichia coli transfected with an AAAD cDNA isolated from the bovine adrenal gland. The PKA-induced AAAD phosphorylation of immunoprecipitates from striatum and midbrain was time and concentration dependent and blocked by a specific PKA peptide inhibitor. Incubation of the catalytic subunit of PKA with striatal homogenates increased enzyme activity by approximately 20% in a time- and concentration-dependent manner. Moreover, incubation of the catalytic subunit of PKA with recombinant AAAD increased activity by approximately 70%. A direct phosphorylation of AAAD protein by PKA might underlie the cyclic AMP-induced rapid and transient activation of AAAD in vivo.  相似文献   

12.
(E)-beta-Fluoromethylene-m-tyrosine (FMMT) is a dual-enzyme-activated inhibitor of monoamine oxidase (MAO). The compound is not an inhibitor per se but is decarboxylated by aromatic L-amino acid decarboxylase (AADC) to yield a potent enzyme-activated irreversible inhibitor of MAO, (E)-beta-fluoromethylene-m-tyramine, which shows some selectivity for inhibition of MAO type A. Decarboxylation of FMMT was demonstrated in vitro using hog kidney AADC and in vivo in rats by the ability of alpha-monofluoromethyldopa (MFMD), a potent inhibitor of AADC, to prevent MAO inhibition produced by FMMT. In isolated synaptosomes, FMMT was decarboxylated by AADC, and, furthermore, the compound was actively transported into these isolated nerve endings. An active transport into the CNS has also been demonstrated in vivo by performing competition experiments with leucine. To demonstrate that FMMT is preferentially decarboxylated within monoamine nerves of the CNS, the nigrostriatal 3,4-dihydroxyphenylethylamine (dopamine) pathway of rats was unilaterally lesioned with 6-hydroxydopamine or infused with MFMD. Under these conditions, MAO inhibition produced by orally administered FMMT in the striatum ipsilateral to the lesion or infusion was markedly attenuated. Combination of FMMT with an inhibitor of extracerebral AADC, such as carbidopa, protected peripheral organs against the MAO inhibitory effects and concomitantly enhanced MAO inhibition in the CNS. Such combinations had a greatly reduced propensity to augment the cardiovascular effects of intraduodenally administered tyramine, when compared with FMMT given alone or with clorgyline, a selective inhibitor of MAO type A. The results obtained with FMMT suggest the possibility of achieving selective inhibition of MAO within monoamine nerves of the CNS and, further, suggest that combination of FMMT with an inhibitor of extracerebral AADC will reduce the propensity of this inhibitor to produce adverse interactions with tyramine.  相似文献   

13.
Aromatic L-amino acid decarboxylase (AAAD) activity of rat retina is low in animals placed in the dark. When the room lights are turned on, activity rises for almost 3 h and reaches values that are about twice the values found in the dark. A study of the kinetics of the enzyme revealed that the apparent Km values for L-3,4-dihydroxyphenylalanine and pyridoxal-5'-phosphate were unchanged in light- and dark-exposed animals, whereas the Vmax increased in the light. Treating the animals with cycloheximide before exposure to light prevented the increase of enzyme activity. Immunotitration with antibodies to AAAD suggested that more enzyme molecules are present in the light than in the dark. When the room lights are turned off AAAD activity drops rapidly at first and then more slowly, suggesting that at least two processes are responsible for the fall of enzyme activity. Exposure to short periods of dark followed by light results in a rapid increase of AAAD activity. Mixing homogenates from light- and dark-exposed rats results in activity values that are less than expected, suggesting the presence of an endogenous inhibitor(s). These studies demonstrate that AAAD activity is modulated in vivo.  相似文献   

14.
15.
The expression vector containing the full-length cDNA of human aromatic L-amino acid decarboxylase (EC 4.1.1.28) was transfected in COS cells by a modified calcium phosphate coprecipitation method. The cells transfected with plasmids that had a true direction of the cDNA gave a major immunoreactive band at 50 kDa. This expressed enzyme catalyzed the decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA), L-5-hydroxytryptophan (L-5-HTP) and L-threo-3,4-dihydroxyphenylserine. The optimal pH of the enzyme activity with L-DOPA as a substrate was 6.5, whereas the enzyme had a broad pH optimum when L-5-HTP was used as a substrate. Addition of pyridoxal phosphate to the incubation mixture greatly enhanced the activity for both L-DOPA and L-5-HTP.  相似文献   

16.
Abstract: Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 {[1α,2β( R )5α]-(−)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol}, and the specific antagonist SR 141716 [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H]dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 µ M ) and anandamide (10 µ M ) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 µ M ). CP 55940 (1 µ M ) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelled striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

17.
Abstract: Cyclic AMP-dependent protein kinase activity was measured in the cerebral cortex of humans 2 days to 83 years of age and in the cortex of F344 rats 3, 22, or 30 months of age. Protein kinase activity was detected in the human brain, but no age-related differences in activity were observed in the presence or absence of cyclic AMP. Age differences were also not seen in protein kinase in the rat cerebral cortex. Enzyme activities in rat and human brain were similar.  相似文献   

18.
Abstract: Previously we identified two alternative first exons (exon N1 and exon L1) coding for 5' untranslated regions of human aromatic l -amino acid decarboxylase (AADC) and found that their alternative usage produced two types of mRNAs in a tissue-specific manner. To determine the cis -acting element regulating the tissue-specific expression of human AADC, we produced three kinds of transgenic mice harboring 5' flanking regions of the human AADC gene fused to the bacterial chloramphenicol acetyltransferase (CAT) gene. The transgene termed ACA contained −7.0 kb to −30 bp in exon N1, including the entire exon L1; ACN contained −3.6 kb to −30 bp in exon N1; and ACL contained −2.8 kb to −42 bp in exon L1. The ACA transgenic mice expressed CAT at extremely high levels in peripheral nonneuronal tissues, such as pancreas, liver, kidney, small intestine, and colon, that contained endogenous high AADC activity, whereas CAT immunoreactivity was not detected in either catecholaminergic or serotonergic neurons in the CNS. Thus, it was suggested that the ACA transgene contained the major part of cis -regulatory elements for the expression of AADC in peripheral nonneuronal tissues. On the other hand, the ACN transgenic mice moderately expressed CAT in various tissues except for the lung and liver, and the ACL transgenic mice showed moderate CAT expression only in the kidney.  相似文献   

19.
Abstract: We applied in vivo microdialysis to assess the effects of dopaminergic and β-adrenergic receptor stimulation on cyclic AMP efflux in rat striatum under chloral hydrate anesthesia. Dopamine (up to 1 mM) infused for 20 min through the probe did not increase cyclic AMP, whereas both the selective dopamine D1 agonist SKF 38393 and D2 antagonist sulpiride produced modest increases. It is interesting that the β-adrenoceptor agonist isoproterenol produced a marked increase (204.7% of basal level at 1 mM) which was antagonized by the β-adreno-ceptor antagonist propranolol. Pretreatment with a glial selective metabolic inhibitor, fluorocitrate (1 mM), by a 5-h infusion through the probe attenuated basal cyclic AMP efflux by 30.3% and significantly blocked the response to isoproterenol. By contrast, striatal injection of a neuro-toxin, kainic acid (2.5 μg), 2 days before the dialysis experiment did not affect basal cyclic AMP or the response to isoproterenol, but blocked the response to SKF 38393. These data demonstrate that β-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum in vivo. They also suggest that basal and β-adre-noceptor-stimulated cyclic AMP efflux are substantially dependent on intact glial cells.  相似文献   

20.
Endogenous phosphorylation of the nicotinic acetylcholine receptor (nAChR) in microsacs from Torpedo marmorata was found to be affected by several reagents commonly used in the preparation of cyclic AMP (cAMP)-dependent protein kinases and in its activity determination. The presence of a Na+,K+-ATPase inhibitor is essential to avoid a rapid depletion of ATP, even when a membrane fraction highly enriched in the nAChR is used. The presence of the thiol reducing agent dithiothreitol was found to abolish the cAMP dependence of nAChR phosphorylation, whereas the less potent reagent 2-mercaptoethanol did not affect the assay. Concentrations in the millimolar range of the chelators EDTA and EGTA were found to inhibit nAChR phosphorylation effectively. This inhibition was not due to a withdrawal of Ca2+ by the chelators, but rather to a reversible inhibition by the Mg2+ complexes. These observations may explain some of the discrepancies found in the literature concerning endogenous and exogenous nAChR phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号