首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutamatergic mechanisms are thought to be involved in stress-induced changes of brain function, especially in the hippocampus. We hypothesized that alterations caused by the hormonal changes associated with chronic and acute stress may affect glutamate uptake and release from hippocampal synaptosomes in Wistar rats. It was found that [3H]glutamate uptake and release by hippocampal nerve endings, when measured 24 h after 1 h of acute restraint, presented no significant difference. The exposure to repeated restraint stress for 40 days increased neuronal presynaptic [3H]glutamate uptake as well as basal and K+-stimulated glutamate release when measured 24 h after the last stress session. Chronic treatment also caused a significant decrease in [3H]glutamate binding to hippocampal membranes. We suggest that changes in the glutamatergic system are likely to take part in the mechanisms involved in nervous system plasticity following repeated stress exposure.  相似文献   

2.
3.
Different effects of exposure to acute or to repeated stress have been observed upon the nociceptive response in rats. In the present study, we repeatedly submitted Wistar rats to restraint for 40 days, a treatment known to induce an increase in the nociceptive response in the tail-flick test. Afterwards, the effect of repeated restraint stress on the density of opioid receptors in rat spinal cord, frontal cortex, and hippocampus was investigated. Results showed that repeatedly stressed rats displayed a significant decrease in opioid receptors density in all structures studied; cortex (141.3 ± 5.7 for control and 103.3 ± 15.9 for stressed rats), hippocampus (92.4 ± 7.2 for control and 64.8 ± 7.7 for stressed rats), and spinal cord (122.2 ± 12.8 for control and 79.7 ± 9.7 for stressed rats). These findings suggest opioid mediation of the altered responses observed in these repeatedly-stressed animals, although the participation of non-opioid mechanisms in this phenomenon cannot be ruled out.  相似文献   

4.
Expression of GABA Receptor ρ Subunits in Rat Brain   总被引:2,自引:1,他引:1  
Abstract: The GABA receptor ρ1, ρ2, and ρ3 subunits are expressed in the retina where they form bicuculline-insensitive GABAC receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of ρ subunits in rat brains. In situ hybridization allowed us to detect ρ-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABAC receptors, ρ2 and ρ1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABAC receptors, ρ2 mRNA is enriched relative to ρ1 mRNA. These results suggest that both ρ1 and ρ2 subunits are necessary to form a functional GABAC receptor. The use of RT-PCR also showed that, except in the superior colliculus, ρ3 is expressed along with ρ1 and ρ2 subunits. We also raised an antibody against a peptide sequence unique to the ρ1 subunit. The use of this antibody on cerebellum revealed the rat ρ1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABAC receptor subunits to identified neurons paves the way for future electrophysiological studies.  相似文献   

5.
In order to characterize the ontogenetic profile of metabotropic glutamate (mGlu) receptors coupled to phospholipase D (PLD) we examined the effects of selected mGlu agents on PLD activity in immature and adult rat hippocampus. The group I mGlu receptor agonist 3,5-dihydroxyphenylglycine stimulated PLD in immature tissue, but reduced the PLD response evoked by the nonselective mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate [(1S,3R)-ACPD] in adult hippocampus. (2R,1S,2R,3S)-2-(2-Carboxy-3-phenylcyclopropyl)glycine (PCCG-13), a recently characterized selective antagonist of PLD-coupled mGlu receptors, displayed a much greater activity in reducing the PLD response to (1S,3R)-ACPD in adult than in neonate hippocampus. Our results lend support to the hypothesis that glutamatergic activation of PLD in the rat hippocampus is developmentally regulated.  相似文献   

6.
Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.  相似文献   

7.
It has been shown that emotional stress may induce oxidative damage, and considerably change the balance between pro-oxidant and antioxidant factors in the brain. The aim of this study was to verify the effect of repeated restraint stress (RRS; 1 h/day during 40 days) on several parameters of oxidative stress in the hippocampus of adult Wistar rats. We evaluated the lipid peroxide levels (assessed by TBARS levels), the production of free radicals (evaluated by the DCF test), the total radical-trapping potential (TRAP) and the total antioxidant reactivity (TAR) levels, and antioxidant enzyme activities (SOD, GPx and CAT) in hippocampus of rats. The results showed that RRS induced an increase in TBARS levels and in GPx activity, while TAR was reduced. We concluded that RRS induces oxidative stress in the rat hippocampus, and that these alterations may contribute to the deleterious effects observed after prolonged stress.  相似文献   

8.
Abstract: In primary cultures of rat cerebellar granule neurons, GABA treatment (50 μ M , 7 days) caused a withdrawal supersensitivity selective for the metabotropic glutamate receptors that mainly prefer l -glutamate, quisqua- late and, to a lesser extent, kainate. The withdrawal supersensitivity was absent when 10 μ M SR-95531 was coadministered with GABA during the treatment period, an event that suggests the GABAA receptors primarily produced the GABA treatment effect. This was supported further by the inability of baclofen treatment to mimic completely the treatment effect of GABA. Withdrawal from 7 days of baclofen treatment only produced a slight increase in the metabotropic effect of l -glutamate and carbachol. In addition, in untreated neurons, baclofen had no acute effect, whereas GABA inhibited the effect of l -glutamate and carbachol. The inhibitory effect of GABA was reversed by SR-95531 and was absent in neurons treated with GABA. These observations suggest the involvement of GABAA receptors and the apparent development of tolerance to GABA, respectively. Also, dependence on GABA may have occurred; the metabotropic effects of glutamate, kainate, and quisqualate were not altered in neurons maintained with GABA treatment.  相似文献   

9.
10.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

11.
Brains from human alcoholics and non-alcoholics were obtained shortly after death. The hippocampus was dissected, homogenized, and processed for the isolation of a synaptic membraneenriched fraction and the study ofl-[3H]glutamic acid and 3-((±)-2-carboxypiperazin-4-yl)-[1,23H]propyl-l-phosphonic acid ([3H]CPP) binding sites. The pharmacological characteristics ofl-[3H]glutamic acid binding to synaptic membranes isolated from hippocampus corresponded to the labeling of a mixture of N-methyl-d-aspartate (NMDA), kainate and quisqualic acid receptor sites. Synaptic membranes prepared from the hippocampus of individuals classified as alcoholics had significantly higher density of glutamate binding sites than identically prepared membranes from non-alcoholic individuals. In addition, there was a clear definition of a population ofl-glutamate binding sites (approx. 10% of total) in the membranes from alcoholics that had a higher affinity for the ligand than the major set of sites labeled in membranes from both alcoholics and non-alcoholics. Neither the age of the individuals at the time of death nor the time that elapsed between death and processing of brain tissue were significant factors in determining either recovery of purified synaptic membranes from brain homogenates orl-[3H]glutamate binding to synaptic membranes. In order to determine whether some of the changes inl-[3H]glutamic acid binding were due to alterations in binding at the NMDA receptor subtype, we also measured binding of [3H]CPP to extensively washed crude synaptosomal membranes. Membranes from brains of alcoholics had higher affinity (3-fold) for [3H]CPP but lower binding capacity (3-fold) when compared with those of non-alcoholics. These observations suggest selective changes among different glutamate receptor subtypes in human brain under conditions of chronic alcohol intake.  相似文献   

12.
It is thought that changes in gene expression in the brain mediate chronic ethanol-induced complex behaviors such as tolerance, dependence, and sensitization, and also relate to ethanol-induced brain toxicity. Using high-density filter-based cDNA microarrays (GeneFilters), we analyzed the expression of over 5000 genes in the dorsal hippocampus of rats treated with 12% ethanol or tap water for 15 months. Ethanol-induced changes in gene expression were particularly prominent in two groups of genes. One group consisted of oxidoreductases, including ceruloplasmin, uricase, branched-chain alpha-keto acid dehydrogenase, NADH ubiquinone oxidoreductase, P450, NAD+-isocitrate dehydrogenase, and cytochrome c oxidase, which may be related to ethanol-induced oxidative stress. The other group of genes included ADP-ribosylation factor, RAS related protein rab10, phosphatidylinositol 4-kinase, dynein-associated polypeptides, and dynamin-1, which seem to be involved in membrane trafficking. The results may reveal some of the pathways involved in ethanol-induced pathophysiological changes.  相似文献   

13.
The hippocampal vasopressin receptors have been characterised by measuring the stimulated accumulation of inositol monophosphate in the presence of 10 mM LiCl after hippocampal slices were prelabelled with [3H]inositol. Arginine-vasopressin caused a dose-dependent increase in inositol monophosphate accumulation (ED50 = 7.1 nM). The response was unchanged in the absence of Ca2+ and significantly reduced in the presence of a V1-receptor antagonist. Equimolar oxytocin was ineffective as a stimulus. This suggests that the hippocampal receptors are of the V1 type.  相似文献   

14.
Abstract: To determine the regional and cellular distribution of the metabotropic glutamate receptor mGluR7a, we used rabbit anti-peptide polyclonal-targeted antibodies against the C-terminal domain of mGluR7a. Here we report that immunocytochemistry at the light-microscopic level revealed that mGluR7a is widely distributed throughout the adult rat brain, with a high level of expression in sensory areas, such as piriform cortex, superior colliculus, and dorsal cochlear nucleus. In most brain structures, mGluR7a immunoreactivity is characterized by staining of puncta and fibers. However, in some regions, including the locus ceruleus, cerebellum, and thalamic nuclei, both cell bodies and fibers are immunopositive. The changes in levels of mGluR7a during development were investigated with immunoblotting and immunocytochemical analysis. Immunoblot analysis revealed that the levels of mGluR7a are differentially regulated across brain regions during postnatal development. In cortical regions (hippocampus, neocortex, and olfactory cortex), mGluR7a levels were highest at postnatal day 7 (P7) and P14, then declined in older rats. In contrast, mGluR7a levels were highest at P7 in pons/medulla and cerebellum and decreased markedly between P7 and P14. In these regions, mGluR7a immunoreactivity was at similar low levels at P14 and P21 and in adults. Immunocytochemical analysis revealed that staining for mGluR7a was exceptionally high in fiber tracts in P7 animals relative to adults. Furthermore, the pattern of mGluR7a immunoreactivity in certain brain structures, including cerebellum, piriform cortex, and hippocampus, was significantly different in P7 and adult animals. In summary, these data suggest that mGluR7a is widely distributed throughout the rat brain and that this receptor undergoes a dynamic, regionally specific regulation during postnatal development.  相似文献   

15.
Abstract: Metabotropic glutamate receptors (mGluRs) are a heterogeneous family of G protein-coupled glutamate receptors that are linked to multiple second messenger systems in the CNS. In this study the selectivity of mGluR agonists for different mGluR second messenger effects was characterized in slices of the rat hippocampus. The mGluR agonists (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid and (2 S ,3 S ,4 S )α-(carboxycyclopropyl)glycine produced multiple effects on second messengers that included enhanced phosphoinositide hydrolysis in both adult and neonatal rat hippocampus, inhibition of forskolin-stimulated cyclic AMP (cAMP) formation in adult tissue, and increases in basal cAMP formation in the neonatal hippocampus. In contrast, 3,5-dihydroxyphenylglycine was potent and effective in increasing phosphoinositide hydrolysis in both adult and neonatal hippocampus but unlike the other mGluR agonists did not inhibit forskolin-stimulated cAMP formation (in the adult) or substantially enhance basal cAMP formation (in the neonate). Thus, in the rat hippocampus mGluR agonist-mediated increases or decreases in cAMP formation are not secondary to mGluR-mediated changes in phosphoinositide hydrolysis. Furthermore, 3,5-dihydroxyphenylglycine can be used to activate subpopulations of mGluRs coupled to phosphoinositide hydrolysis with minimal effects on cAMP-mGluR second messenger systems.  相似文献   

16.
1. Aim: In Alzheimer's disease (AD) it is well known that specific regions of the brain are particularly vulnerable to the pathologic insults of the disease. In particular, the hippocampus is affected very early in the disease and by end stage AD is ravaged by neurofibrillary tangles and senile plaques (i.e., the pathologic hallmarks of AD). Throughout the past several years our laboratory has sought to determine the molecular mechanisms underlying the selective vulnerability of neurons in AD.2. Methods: To this end, we employed immunohistochemical, biochemical, and in situ hybrization methods to examine glutamate and -aminobutyric acid (GABAA) receptor subtypes in the hippocampus of patients displaying the full spectrum of AD pathology.3. Results: Despite the fact that the hippocampus is characterized by a marked loss of neurons in the late stages of the disease, our data demonstrate a rather remarkable preservation among some glutamate and GABAA receptor subtypes.4. Conclusions: Collectively, our data support the view that the relatively constant levels of selected receptor subtypes represent a compensatory up-regulation of these receptors subunits in surviving neurons. The demonstration that glutamate and GABA receptor subunits are comparably unaffected implies that even in the terminal stages of the disease the brain is attempting to maintain a balance in excitatory and inhibitory tone. Our data also support the concept that receptor subunits are differentially affected in AD with some subunits displaying no change while others display alterations in protein and mRNA levels within selected regions of the hippocampus. Although many of these changes are modest, they do suggest that the subunit composition of these receptors may be altered and hence affect the pharmacokinetic and physiological properties of the receptor. The latter findings stress the importance of understanding the subunit composition of individual glutamate/GABA receptors in the diseased brain prior to the development of drugs targeted towards those receptors.  相似文献   

17.
The expression levels of three chitinase genes in Arabidopsis thaliana, AtChiA (class III), AtChiB (class I), and AtChiV (class IV), were examined under various stress conditions by semi-quantitative RT-PCR. Under normal growth conditions, the AtChiB and AtChiV genes were expressed in most organs of Arabidopsis plants at all growth stages, whereas the AtChiA gene was not expressed at all. The class III AtChiA gene was expressed exclusively when the plants were exposed to environmental stresses, especially to salt and wound stresses. Treatment of Arabidopsis plants with allosamidin, which inhibits class III chitinases, did not affect the growth rate. Surprisingly, however, the plants treated with allosamidin were more tolerant of abiotic stresses (cold, freezing, heat, and strong light) than the control plants. It also appeared that allosamidin enhances AtChiA and AtChiB expression under heat and strong light stresses. Allosamidin is likely to enhance abiotic stress tolerance, probably through crosstalk between the two signaling pathways for biotic and abiotic stress responses.  相似文献   

18.
Adverse life experiences increase the lifetime risk to several stress‐related psychopathologies, such as anxiety or depressive‐like symptoms following stress in adulthood. However, the neurochemical modulations triggered by stress have not been fully characterized. Neuropeptides play an important role as signaling molecules that contribute to physiological regulation and have been linked to neurological and psychiatric diseases. However, little is known about the influence of stress on neuropeptide regulation in the brain. Here, we have performed an exploratory study of how neuropeptide expression at adulthood is modulated by experiencing a period of multiple stressful experiences. We have targeted hippocampus and prefrontal cortex (PFC) brain areas, which have previously been shown to be modulated by stressors, employing a targeted liquid chromatography‐mass spectrometry (LC‐MS) based approach that permits broad peptide coverage with high sensitivity. We found that in the hippocampus, Met‐enkephalin, Met‐enkephalin‐Arg‐Phe, and Met‐enkephalin‐Arg‐Gly‐Leu were upregulated, while Leu‐enkephalin and Little SAAS were downregulated after stress. In the PFC area, Met‐enkephalin‐Arg‐Phe, Met‐enkephalin‐Arg‐Gly‐Leu, peptide PHI‐27, somatostatin‐28 (AA1‐12), and Little SAAS were all downregulated. This systematic evaluation of neuropeptide alterations in the hippocampus and PFC suggests that stressors impact neuropeptides and that neuropeptide regulation is brain‐area specific. These findings suggest several potential peptide candidates, which warrant further investigations in terms of correlation with depression‐associated behaviors.  相似文献   

19.
Abstract: We previously reported that a variant with extra amino acid residues exists in the metabotropic glutamate receptor subtype 5 (mGluR5). Either of the two isoforms, named mGluR5b and mGluR5a for the isoforms with and without the inserted sequence, respectively, generated Ca2+-activated Cl current when expressed in Xenopus oocytes. We herein report that these two isoforms are produced by the alternative splicing of the exon skipping type. When examined during the course of postnatal development, the major mGluR5 isotype mRNA was observed to switch from mGluR5a to mGluR5b in the rat hippocampus and the cerebral cortex. We also investigated two cell lines that could be differentiated into neuron-like cells in vitro. Whereas the mGluR5b mRNA was hardly detectable in either undifferentiated or differentiated NG108-15 cells, the relative amounts of the two variant mRNAs changed after the induction of differentiation in the P19 cells. An extracellular application of trans - d,l -1-amino-1,3-cyclopentanedicarboxylate on the neuron-like P19 cells induced intracellular Ca2+ mobilization, thus suggesting that the cells could express functional mGluR(s) coupled to phospholipase C and other components that could mediate the signal transduction pathway. This cell line may thus provide a model system for studying both mGluR5 expression and other mGluR-induced phenomena at the molecular level.  相似文献   

20.
Lim  Dong Koo  Kim  Han Soo 《Neurochemical research》2001,26(10):1119-1125
Cerebellar granule and glial cells were cultured from 7 day-old rat pups after pre- and post-natal nicotine treatment. Ten days later, the basal release of glutamate in the granule cells prepared from the pre- and post-natally nicotine-exposed pups was higher and lower than the controls, respectively. The N-methyl-D-aspartate-induced release of glutamate was higher in the granule cells of post-natal nicotine exposed rats. However, the nicotine-induced glutamate release was either unchanged or was lower in the granule cells of all nicotine-treated pups. The basal glutamate uptake was higher in the glial cells from those exposed pre-natally and lower in the continuously nicotine-exposed pups. The sensitivities of L-trans-pyrrolidine-2,4-dicarboxylic acid on glutamate uptake were higher in all nicotine treated groups. There was a higher number of specific [3H]dizocilpine binding sites in the pre- or continuously nicotine-exposed group. These results suggest that the cerebellar cell properties are altered after perinatal nicotine exposure and that the development of an excitatory amino acid system might be affected differently depending on the nicotine exposure time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号