首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Aim The goal of our study was to test fundamental predictions of biogeographical theories in tropical reef fish assemblages, in particular relationships between fish species richness and island area, isolation and oceanographic variables (temperature and productivity) in the insular Caribbean. These analyses complement an analogous and more voluminous body of work from the tropical Indo‐Pacific. The Caribbean is more limited in area with smaller inter‐island distances than the Indo‐Pacific, providing a unique context to consider fundamental processes likely to affect richness patterns of reef fish. Location Caribbean Sea. Methods We compiled a set of data describing reef‐associated fish assemblages from 24 island nations across the Caribbean Sea, representing a wide range of isolation and varying in land area from 53 to 110,860 km2. Regression‐based analyses compared the univariate and combined effects of island‐specific physical predictors on fish species richness. Results We found that diversity of reef‐associated fishes increases strongly with increasing island area and with decreasing isolation. Richness also increases with increasing nearshore productivity. Analyses of various subsets of the entire data set reveal the robustness of the richness data and biogeographical patterns. Main conclusions Within the relatively small and densely packed Caribbean basin, fish species richness fits the classical species–area relationship. Richness also was related negatively to isolation, suggesting direct effects of dispersal limitation in community assembly. Because oceanic productivity was correlated with isolation, however, the related effects of system‐wide productivity on richness cannot be disentangled. These results highlight fundamental mechanisms that underlie spatial patterns of biodiversity among Caribbean coral reefs, and which are probably also are functioning in the more widespread and heterogeneous reefs of the Indo‐Pacific.  相似文献   

2.
Hawaiian biogeography and the islands' freshwater fish fauna   总被引:3,自引:0,他引:3  
Aim This paper describes known patterns in the distributions and relationships of Hawaiian freshwater fishes, and compares these patterns with those exhibited by Hawaii's terrestrial biota. Location The study is based in Hawaii, and seeks patterns across the tropical and subtropical Indo‐west Pacific. Methods The study is based primarily on literature analysis. Results The Hawaiian freshwater fish fauna comprises five species of goby in five different genera (Gobiidae). Four species are Hawaiian endemics, the fifth shared with islands in the western tropical Pacific Ocean. All genera are represented widely across the Indo‐west Pacific. All five species are present on all of the major Hawaiian islands. All five species are amphidromous – their larval and early juvenile life being spent in the sea. Although there has been some local phyletic evolution to produce Hawaiian endemics, there has been no local radiation to produce single‐island endemics across the archipelago. Nor is there evidence for genetic structuring among populations in the various islands. Main conclusions In this regard, the freshwater fish fauna of Hawaii differs from the well‐known patterns of local evolution and radiation in Hawaiian Island terrestrial taxa. Amphidromy probably explains the biogeographical idiosyncrasies of the fish fauna – dispersal through the sea initially brought the fish species to Hawaii, and gene flow among populations, across the archipelago, has hitherto inhibited the evolution of local island endemics, apparently even retarding genetic structuring on individual islands.  相似文献   

3.
Abstract Evolutionary radiations of colonists on archipelagos provide valuable insight into mechanisms and modes of speciation. The apparent diversification of Galapagos mockingbirds (Nesomimus) provoked Darwin's initial conception of adaptive radiation, but the monophyly of this historically important exemplar has not been evaluated with molecular data. Additionally, as with most Galapagos organisms, we have a poor understanding of the temporal pattern of diversification of the mockingbirds following colonization(s) from source populations. Here we present a molecular phylogeny of Galapagos and other mockingbird populations based on mitochondrial sequence data. Monophyly of Galapagos mockingbirds was supported, suggesting a single colonization of the archipelago followed by diversification. Our analyses also indicate that Nesomimus is nested within the traditional genus Mimus, making the latter paraphyletic, and that the closest living relatives of Galapagos mockingbirds appear to be those currently found in North America, northern South America, and the Caribbean, rather than the geographically nearest species in continental Ecuador. Thus, propensity for over‐water dispersal may have played a more important role than geographic proximity in the colonization of Galapagos by mockingbirds. Within Galapagos, four distinct mitochondrial DNA clades were identified. These four clades differ from current taxonomy in several important respects. In particular, mockingbirds in the eastern islands of the archipelago (Española, San Cristóbal, and Genovesa) have very similar mitochondrial DNA sequences, despite belonging to three different nominal species, and mockingbirds from Isabela, in the west of the archipelago, are more phylogenetically divergent than previously recognized. Consistent with current taxonomy is the phylogenetic distinctiveness of the Floreana mockingbird (N. trifasciatus) and close relationships among most mockingbirds from the central and northern region of the archipelago (currently considered conspecific populations of N. parvulus). Overall, phylogeographic patterns are consistent with a model of wind‐based dispersal within Galapagos, with colonization of more northerly islands by birds from more southern populations, but not the reverse. Further radiation in Galapagos would require coexistence of multiple species on individual islands, but this may be prevented by relatively limited morphological divergence among mockingbirds and by lack of sufficient habitat diversity in the archipelago to support more than one omnivorous mimid  相似文献   

4.
In the marine realm, the tropics host an extraordinary diversity of taxa but the drivers underlying the global distribution of marine organisms are still under scrutiny and we still lack an accurate global predictive model. Using a spatial database for 6336 tropical reef fishes, we attempted to predict species richness according to geometric, biogeographical and environmental explanatory variables. In particular, we aimed to evaluate and disentangle the predictive performances of temperature, habitat area, connectivity, mid‐domain effect and biogeographical region on reef fish species richness. We used boosted regression trees, a flexible machine‐learning technique, to build our predictive model and structural equation modeling to test for potential ‘mediation effects’ among predictors. Our model proved to be accurate, explaining 80% of the total deviance in fish richness using a cross‐validated procedure. Coral reef area and biogeographical region were the primary predictors of reef fish species richness, followed by coast length, connectivity, mid‐domain effect and sea surface temperature, with interactions between the region and other predictors. Important indirect effects of water temperature on reef fish richness, mediated by coral reef area, were also identified. The relationship between environmental predictors and species richness varied markedly among biogeographical regions. Our analysis revealed that a few easily accessible variables can accurately predict reef fish species richness. They also highlight concerns regarding ongoing environmental declines, with region‐specific responses to variation in environmental conditions predicting a variable response to anthropogenic impacts.  相似文献   

5.
1. Chironomids and chaoborids were collected across eastern Australia and Tasmania in dune, glacial, sinkhole and maar lakes. Based on sampling exuviae from these relatively undisturbed freshwater lakes, we observed that species richness on the Australian continent was substantially greater than previously reported, and challenge the long‐standing view that chironomid species richness is depauperate in Australian lakes, compared with the northern hemisphere. 2. While chironomid species richness was equivalent across the four geographical regions sampled (tropical northern Queensland, Fraser Island, south‐eastern mainland Australia and Tasmania), there were only five ‘cosmopolitan’ species found across all regions. In general, species distributions were more closely associated with geographical region than with lake characteristics, and there were species assemblage differences among biogeographical regions. More than half of the 134 identified species were restricted to a single geographical region. Overall, Tasmanian lakes had the highest proportion of locally endemic species. 3. Latitude and altitude more strongly influenced species assemblages than did lake chemistry, although species richness sometimes varied among lake geomorphic types within a region.  相似文献   

6.
Given that East Asia is located south‐west of Beringia and was less glaciated during the Pleistocene, species at higher latitudes were able to expand their range in this region during climate cooling. Although southward migration is an inevitable colonization process, the biogeographical history of the disjunct ranges of higher‐latitude species in East Asia has been investigated less extensively. Here, we assess whether their disjunct distributions in the Japanese archipelago connected sufficiently with Beringia or persisted in isolation following their establishment. Sequences of nine nuclear loci were determined for Cassiope lycopodioides (Ericaceae) from the Japanese archipelago as well as its surrounding areas, Kamchatka and Alaska. According to the geographical pattern of genetic diversity, the northern populations from Kamchatka to the northern part of the Japanese archipelago were similar genetically and were differentiated from populations in central Japan. Our study suggested that the distribution of C. lycopodioides was connected between the northern part of the Japanese archipelago and south‐western Beringia due to Pleistocene climate cooling. Conversely, central Japan harboured a disjunct range after its establishment. These inferences suggest that widespread range expansion in northern East Asia was plausible for species distributed in Beringia. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 497–509.  相似文献   

7.
Aim We analysed the distribution patterns of the eastern Pacific octocoral genus Pacifigorgia and deduced its ancestral distribution to determine why Pacifigorgia is absent from the Gulf of Mexico, the Caribbean of central America, and the Antilles. We also examined the current patterns of endemism for Pacifigorgia to look for congruence between hot spots of endemism in the genus and generally recognized areas of endemism for the eastern Pacific. Location The tropical eastern Pacific and western Atlantic, America. Methods We used track compatibility analysis (TCA) and parsimony analysis of endemicity (PAE) to derive ancestral distribution patterns and hot spots of endemism, respectively. Distributional data for Pacifigorgia were gathered from several museum collections and from fieldwork, particularly in the Pacific of Costa Rica and Panama. Results A single generalized track joined the three main continental eastern Pacific biogeographical provinces and the western Atlantic. This track can be included within a larger eastern Atlantic–eastern Pacific transoceanic track that may be the oldest transoceanic track occurring in the region. PAE results designate previously recognized eastern Pacific biogeographical provinces as Pacifigorgia hot spots of endemism. The number of endemic species, which for other taxonomic groups is similar among the eastern Pacific provinces, is higher in the Panamic province for Pacifigorgia. Main conclusions We propose that the absence of Pacifigorgia from the Gulf of Mexico, the Caribbean of central America, and the Antilles is the result of an ancient absence of the genus from these areas rather than the consequence of a major, recent, extinction episode. The Cortez province and the Mexican province appear together as a result of either non‐response to vicariance or dispersal across the Sinaloan Gap. We posit that the Central American Gap acts as a barrier that separates the Panamic province from the northern Cortez–Mexican province.  相似文献   

8.
The composition, species richness and diversity of a coastal fish assemblage from the Kalpakkam coast of south‐east India are described along with temporal distribution patterns related to seasonal fluctuations in dissolved oxygen, salinity, pH, chlorophyll‐a, phytoplankton and zooplankton species richness and density. A total of 244 fish species belonging to 21 orders, 87 families and 163 genera were recorded. The fish assemblage was dominated by reef‐associated species, followed by demersal species. The majority of the species (63%) are widely distributed in the western Indo‐Pacific as well as in the central Indo‐Pacific. Jaccard's coefficient analysis showed three distinct seasonal patterns of fish occurrence: pre‐monsoon (PrM), monsoon (M) and post‐monsoon (PoM). The maximum number of species was during the PrM period, followed by the PoM and M periods. Species occurrence analysis showed Sardinella longiceps to be dominant during PrM and M periods, Leiognathus dussumieri during the M period and Secutor insidiator and Secutor ruconius during the M and PoM periods. Canonical correspondence analysis indicated that salinity and rainfall were the two most influential environmental factors strongly correlated with temporal variation in the fish assemblage. The physico‐chemical conditions, in combination with factors such as greater food availability and shelter, might control the seasonal local distribution of the ichthyofauna in these Indian coastal waters.  相似文献   

9.
Input data, analytical methods and biogeography of Elegia (Restionaceae)   总被引:1,自引:0,他引:1  
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences.  相似文献   

10.
Aim To investigate the biogeographical structure and affinities of the Australian marine demersal ichthyofauna at the scale of provinces and bathomes for the purposes of regional marine planning. Location Australia. Methods Patterns of distribution in the Australian fish fauna, at both intra‐regional and global scales, were examined using a science‐based, management framework dividing Australia’s marine biodiversity into 16 province‐level biogeographical units. Occurrences of 3734 species in eight depth‐stratified bathomes (from the coast to the mid‐continental slope) within each province were analysed to determine the structure and local affinities of their assemblages and their association with faunas of nearby regions and oceans basins. Results Strong geographic and depth‐related structure was evident. Fish assemblages in each province, and in each bathome of each province, were distinct, with the shelf‐break bathome more similar to the adjacent continental shelf bathome than to the upper slope bathome. Data based only on endemic species performed well as a surrogate of the entire dataset, yielding comparable patterns of similarity between provinces and bathomes. Tropical and temperate elements were better discriminated than elements of the Pacific and Indian oceans, with the central western province more similar to the tropical provinces (including those in the east), and the eastern province closer to southern temperate provinces. The fauna shares the closest regional affinities with those of the adjacent south‐west Pacific, western Pacific Rim, and elements of wide‐ranging Indo‐Pacific components. Elements unique to the Pacific and Indian oceans are poorly represented. Main conclusions The complex nature of Australia’s marine ichthyofauna is confirmed. A hierarchy of provinces and bathomes, used to ensure that Australia’s developing marine reserve network is both representative and comprehensive, is equally robust when based on all known Australian fish species or on only those species endemic to this continent. Latitude and depth are more important than oceanic influences on the composition of this fauna at these scales.  相似文献   

11.
Aim To determine the applicability of biogeographical and ecological theory to marine species at two remote island locations. This study examines how biogeography, isolation and species geographic range size influence patterns of species richness, endemism, species composition and the abundance of coral reef fishes. Location Christmas Island and the Cocos (Keeling) Islands in the tropical eastern Indian Ocean. Methods Published species lists and underwater visual surveys were used to determine species richness, endemism, species composition and abundance of reef fishes at the islands. These data were statistically compared with patterns of species composition and abundance from the neighbouring ‘mainland’ Indonesian region. Results The two isolated reef fish communities were species‐poor and contained a distinct taxonomic composition with an overrepresentation of species with high dispersal potential. Despite low species richness, we found no evidence of density compensation, with population densities on the islands similar to those of species‐rich mainland assemblages. The mix of Indian and Pacific Ocean species and the proportional representations of the various regional faunas in the assemblages were not influenced by the relative proximity of the islands to different biogeographical provinces. Moreover, species at the edge of their range did not have a lower abundance than species at the centre of their range, and endemic species had substantially higher abundances than widespread species. At both locations, endemism was low (less than 1.2% of the community); this may be because the locations are not sufficiently isolated or old enough to promote the evolution of endemic species. Main conclusions The patterns observed generally conform to terrestrial biogeographical theory, suggesting that similar processes may be influencing species richness and community composition in reef fish communities at these remote islands. However, species abundances differed from typical terrestrial patterns, and this may be because of the life history of reef fishes and the processes maintaining isolated populations.  相似文献   

12.
Aim We examined the ectoparasite fauna of Sebastes capensis over almost all its geographical distribution range (Chilean, Argentinean and South African coasts) to determine (1) whether the ectoparasites of this host show a zoogeographical pattern and, if so, (2) how this pattern is related to known zoogeographical patterns for free‐living organisms. Location Fish were captured from 20, 24, 30, 33, 36, 40, 45 and 52° S along the Chilean coast; 11° S on the Peruvian coast; 43° S on the Argentina coast; and 34° S on the South African coast. Methods From April to September 2003 and from April to August 2004, 626 fish were captured. The parasites were collected using standard parasitological techniques. At the component community level, zoogeographical distribution patterns were evaluated using cluster analysis. At the infra‐community level, patterns of similarity in parasite composition among localities were investigated with multivariate discriminant analyses. Results The ectoparasite fauna of S. capensis consists of six species distributed along the whole of the Chilean coast. Four other species are distributed only within the transitional zone between the northern warm temperate region (Peruvian faunistic province), extending from Peru to the northern Chilean coast up to c. 30° S, and the cold temperate region (Magellanic faunistic province). The component communities from latitudes 30 to 40° S showed higher ectoparasite species richness, while localities on the margins of the geographical range showed lower species richness. Cluster analysis indicated a grouping of localities consistent with the transitional zone. Argentina and South Africa always emerged as separate localities. Main conclusions The ectoparasite communities of S. capensis do not follow a distributional pattern concordant with the known biogeographical zones for invertebrates and/or fish along the south‐eastern Pacific. Therefore their ectoparasite fauna is not useful as a zoogeographical indicator, although it does allow us to distinguish the transitional zone of the south‐eastern Pacific. On a more extended geographical scale, it is possible to distinguish the ectoparasite communities of S. capensis in the south‐eastern Pacific (as a whole) from those of Argentina and South Africa.  相似文献   

13.
The Opuntia (prickly pear) genus contains over 200 species. Six of them are endemic to the Galapagos archipelago. Although these cacti are ‘keystone’ species of the Galapagos’ semi‐arid ecosystem, they have never been studied in detail. Because of their current threatened status and their important role in the ecosystem, we developed 16 microsatellite markers to study the population genetic structure of some of these species. These markers display a high level of polymorphism with numbers of alleles per locus ranging from six to 53. Results also revealed possible polyploidy in these cacti.  相似文献   

14.
Aim In the Indo‐Pacific, the mass of islands of the Indonesian archipelago constitute a major biogeographical barrier (the Indo‐Pacific Barrier, IPB) separating the Pacific and Indian oceans. Evidence for other, more localized barriers include high rates of endemism at the Marquesas and other isolated peripheral islands in the Pacific. Here we use mitochondrial‐sequence comparisons to evaluate the efficacy of biogeographical barriers on populations of the snappers Lutjanus kasmira and Lutjanus fulvus across their natural ranges. Location Pacific and Indian oceans. Methods Mitochondrial cytochrome b sequence data were obtained from 370 individuals of L. kasmira and 203 individuals of L. fulvus collected from across each species’ range. Allele frequency data for two nuclear introns were collected from L. kasmira. Phylogenetic and population‐level analyses were used to determine patterns of population structure in these species and to identify barriers to dispersal. Results Lutjanus kasmira lacks genetic structure across the IPB and throughout 12,000 km of its central Indo‐Pacific range. In contrast, L. fulvus demonstrates high levels of population structure at all geographical scales. In both species, highly significant population structure results primarily from the phylogenetic distinctiveness of their Marquesas Islands populations (L. kasmira, d = 0.50–0.53%; L. fulvus, d = 0.87–1.50%). Coalescence analyses of the L. kasmira data indicate that populations at opposite ends of its range (western Indian Ocean and the Marquesas) are the oldest. Coalescence analyses for L. fulvus are less robust but also indicate colonization from the Indian to the Pacific Ocean. Main conclusions The IPB does not act as a biogeographical barrier to L. kasmira, and, in L. fulvus, its effects are no stronger than isolating mechanisms elsewhere. Both species demonstrate a strong genetic break at the Marquesas. Population divergence and high endemism in that archipelago may be a product of geographical isolation enhanced by oceanographic currents that limit gene flow to and from those islands, and adaptation to unusual ecological conditions. Lutjanus kasmira shows evidence of Pleistocene population expansion throughout the Indo‐central Pacific that originated in the western Indian Ocean rather than the Marquesas, further demonstrating a strong barrier at the latter location.  相似文献   

15.
Aim Changing conditions across spatial gradients are primary determinants of biotic regions, local habitats, and distributional edges. We investigate how a climatic gradient and edaphic mosaic interact as multi‐scale drivers of spatial patterns in scarabaeine dung beetles. The patterns are tested for congruency with ecoregion and floral boundaries over the same gradient, as responses to physical factors often differ among higher taxa. Location Southern Africa and the Nama Karoo–Kalahari ecotone, Northern Cape, South Africa. Methods Data consisted of the climatic distributions of 104 species and their abundances at 223 sites in two ecoregions/floral biomes, four bioregions, and 13 vegetation units. Factor analyses determined the biogeographical composition of the species, and regional‐ to local‐scale patterns in species abundance structure. Hierarchical analysis of oblique factors determined the proportional contribution of spatial variance to patterns. One‐way anova was used to test for significant separation of patterns along factor axes. Stepwise multiple regression was used to determine correlations of five physical attributes with species richness, Shannon‐Wiener diversity, and factor loadings for the study sites. Results Four biogeographical influences overlap in the study region, although rank contribution declines from south‐west arid through north‐east savanna to widespread and south‐east highland taxa. Species abundance structure comprises five subregional patterns, two centred to the north‐east (Kalahari, Isolated Kalahari Dune) dominated by Kalahari influence, and three to the south‐west (Nama Karoo subdivisions: Bushmanland, ‘Upper’, ‘Stony Prieska’) dominated by south‐west arid influence. Kalahari deep sands are characterized especially by a warmer, moister climate, whereas the Nama Karoo mosaic of deep or stony soils is characterized especially by north‐west aridity (Bushmanland), south‐east cooler temperatures (‘Upper’), or excessively stony soils (‘Stony Prieska’). Four of the subregional patterns each comprised three localized patterns related primarily to relative stoniness, edge effects from geographical position, or incidence of rainfall. Species richness and diversity declined with decreasing rainfall and increasing stoniness. Main conclusions Climatic and edaphic factors are important multi‐scale determinants of spatial patterns in dung beetle assemblage structure, with edaphic factors becoming more important at local spatial scales. The patterns are roughly congruent with the Kalahari Savanna–Nama Karoo ecotone at the floral biome or ecoregion scale, but show limited coincidence with finer‐scale floral classification.  相似文献   

16.
Delineating biogeographical regions is a critical step towards the establishment and evaluation of conservation priorities. In the present study, we analysed the distribution patterns of the freshwater fish of an understudied European biodiversity hotspot, the Balkan Peninsula. Based on the most extensive available database of native freshwater fish species distributions, we performed a hierarchical clustering analysis to identify the major biogeographical regions of the Balkan Peninsula. We also highlighted the ‘hottest hotspots’ of freshwater fish diversity across the delimited biogeographical regions by describing the patterns of species richness, endemic and vulnerable species; indicator species were also determined. The bioregionalisation scheme consisted of eight groups of drainage basins that correspond to distinct regions of the Balkan Peninsula. Overall, the delineated biogeographical regions varied in terms of species richness, endemism, vulnerability (i.e. extinction threats) and indicator species composition. From a conservation perspective, this study emphasises the prioritisation of areas characterised by high levels of irreplaceability (endemism) and vulnerability (i.e. the Attikobeotia region, Ionian Sea and Prespa Lakes) and stresses the necessity of implementing a network of protected freshwater areas across the Balkan Peninsula.  相似文献   

17.
Aim To investigate and establish the significance of various island biogeographic relationships (geographical, ecological and anthropological) with the species richness of introduced mammals on offshore islands. Location The 297 offshore islands of the New Zealand archipelago (latitude: 34–47°S; longitude: 166–179°E). Methods Data on New Zealand offshore islands and the introduced mammals on them were collated from published surveys and maps. The species richness of small and large introduced mammals were calculated for islands with complete censuses and regressed on island characteristics using a Poisson distributed error generalized linear model. To estimate the ‘z‐value’ for introduced mammals on New Zealand islands, least‐squares regression was used [log10 S vs. log10 A]. Results High collinearity was found between the area, habitat diversity and elevation of islands. The island characteristics related to the species richness of introduced mammals differed predictably between large and small mammals. The species richness of introduced large mammals was mostly related to human activities on islands, whereas species richness of introduced small mammals was mostly related to island biogeographical parameters. The ‘z‐value’ for total species richness is found to be expectedly low for introduced mammals. Main conclusions Distance appears to have become ecologically trivial as a filter for introduced mammal presence on New Zealand offshore islands. There is strong evidence of a ‘small island’ effect on New Zealand offshore islands. The species richness of both small and large introduced mammals on these islands appears to be most predominantly related to human use, although there is some evidence of natural dispersal for smaller species. The ecological complexity of some islands appears to make them less invasible to introduced mammals. Some human activities have an interactive effect on species richness. A small number of islands have outlying species richness values above what the models predict, suggesting that the presence of some species may be related to events not accounted for in the models.  相似文献   

18.
Aim To study the siting of marine protected areas (MPAs) with respect to the biogeographical distribution of seaweeds within the Agulhas Marine Province and to assess the effectiveness of current MPAs in including (conserving) seaweeds of the South African south coast. Location South Africa – the south coast between Cape Agulhas and the Eastern Cape/Kwazulu‐Natal border, and eight MPAs within that area. Methods We used interpolated seaweed distribution records from all available sources, in 50‐km coastal sections. Cluster analysis (Jaccard Average Linkage) of species presence/absence data provided measures of similarity between coastal sections and between MPAs. Complementarity analyses identified the sequence of ‘importance’ of sections/MPAs for conserving seaweed species. Results Species presence/absence data indicated two main groups, representing western (cooler water) and eastern (warmer water) biogeographical divisions, as well as several biogeographical subdivisions within each of these groups. Complementarity analysis yielded a sequence of ‘importance’ of coastal sections (in terms of the highest number of species included) that began with a section just east of central in the Agulhas Marine Province, around Port Alfred, where there is no MPA. This was followed by the easternmost section (warmest water), which contains the Pondoland MPA, and then by the westernmost (coolest water) section, containing the De Hoop MPA. Similar analysis of the actual species collected in MPAs showed a generally similar pattern. Main conclusions Seven current MPAs and one proposed coastal MPA in the Agulhas Marine Province appear to be well distributed and well sited to include (conserve) the full biogeographical range of seaweeds. However, if further MPAs are to be considered, the Port Alfred area is recommended for improved conservation. This study did not examine estuaries, which may require improved conservation efforts. Seaweed distribution data, which are often relatively complete, offer a good tool for planning the siting of coastal MPAs.  相似文献   

19.
Although it is an uncommon distribution in seed plants, many bryophytes occur around the Pacific Rim of north‐western North America and eastern Asia. This work focuses on a clade of peatmosses (Sphagnum) that is distributed around the Pacific Rim region, with some individual species found across the total range. The goals were to infer divergent phylogenetic relationships among haploid species in the clade, assess parentage of allopolyploid taxa, and evaluate alternative hypotheses about inter‐ and intraspecific geographical range evolution. Multiple data sets and analyses resolved an ‘Alaska’ clade, distributed across western North America, eastern China and Japan, and an ‘Asia’ clade that includes western Chinese, Thai, Korean, eastern Chinese and Japanese lineages. Allopolyploids have arisen at least four times in the Pacific Rim clade of Sphagnum subgen. Subsecunda; it appears that all allopolyploid origins involved closely related haploid parental taxa. Biogeographical inferences were impacted by topological uncertainty and especially by the biogeographical model utilized to reconstruct ancestral areas. Most analyses converge on the conclusion that the ancestor to this clade of Pacific Rim Sphagnum species was widespread from Alaska south to eastern Asia, but a northern origin for the Alaska subclade was supported by one of the two biogeographical models we employed, under which it was robust to phylogenetic uncertainty.  相似文献   

20.
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号