首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.  相似文献   

2.
During postnatal development of the cerebellum, granule cell precursors (GCPs) proliferate in the external granular layer (EGL), exit the cell cycle, differentiate, and migrate from the EGL to the internal granular layer. In the present study, we report that type 2 and 3 inositol 1,4,5-trisphosphate (IP3) receptors (IP3R2 and IP3R3) regulate the differentiation of GCPs after postnatal day 12 (P12). 5-Bromodeoxyuridine labeling experiments revealed that in mutant mice lacking both of these receptors (double mutants) a greater number of GCPs remain undifferentiated after P12. Consequently, the EGL of the double mutants is thicker than that of control mice at this age and thereafter. In addition, granule cells remain in the EGL of the double mutants at P21, an age when migration has concluded in wild-type mice. Whereas differentiation of GCPs was reduced in the double mutants, the absence of IP3R2 and IP3R3 did not affect the doubling time of GCPs. We conclude that intracellular calcium release via IP3R2s and IP3R3s promotes the differentiation of GCPs within a specific interval of postnatal development in the cerebellum.  相似文献   

3.
During development of the cerebellum, Sonic hedgehog (SHH) is expressed in migrating and settled Purkinje neurons and is directly responsible for proliferation of granule cell precursors in the external germinal layer. We have previously demonstrated that SHH interacts with vitronectin in the differentiation of spinal motor neurons. Here, we analysed whether similar interactions between SHH and extracellular matrix glycoproteins regulate subsequent steps of granule cell development. Laminins and their integrin receptor subunit alpha6 accumulate in the outer most external germinal layer where proliferation of granule cell precursors is maximal. Consistent with this expression pattern, laminin significantly increases SHH-induced proliferation in primary cultures of cerebellar granule cells. Vitronectin and its integrin receptor subunits alpha(v) are expressed in the inner part of the external germinal layer where granule cell precursors exit the cell cycle and commence differentiation. In cultures, vitronectin is able to overcome SHH-induced proliferation, thus allowing granule cell differentiation. Our studies indicate that the pathway in granule cell precursors responsible for the conversion of a proliferative SHH-mediated response to a differentiation signal depends on CREB. Vitronectin stimulates phosphorylation of cyclic-AMP responsive element-binding protein (CREB), and over-expression of CREB is sufficient to induce granule cell differentiation in the presence of SHH. Taken together, these data suggest that granule neuron differentiation is regulated by the vitronectin-induced phosphorylation of CREB, a critical event that terminates SHH-mediated proliferation and permits the differentiation program to proceed in these cells.  相似文献   

4.
In the developing cerebellum granule cell precursors (GCPs) proliferate in the external granule cell layer before differentiating and migrating to the inner granule cell layer. Aberrant GCP proliferation leads to medulloblastoma, the most prevalent form of childhood brain cancer. Here, we demonstrate that the calcium‐sensing receptor (CaSR), a homodimeric G‐protein coupled receptor, functions in conjunction with cell adhesion proteins, the integrins, to enhance GCP migration and cell homing by promoting GCP differentiation. During the second postnatal week a robust peak in CaSR expression was observed in GCPs; reciprocal immunoprecipitation experiments conducted during this period established that the CaSR and β1 integrins are present together in a macromolecular protein complex. Analysis of cell‐surface proteins demonstrated that activation of the CaSR by positive allosteric modulators promoted plasma membrane expression of β1 integrins via ERK2 and AKT phosphorylation and resulted in increased GCP migration toward an extracellular matrix protein. The results of in vivo experiments whereby CaSR modulators were injected i.c.v. revealed that CaSR activation promoted radial migration of GCPs by enhancing GCP differentiation, and conversely, a CaSR inhibitor disrupted GCP differentiation and promoted GCP proliferation. Our results demonstrate that an ion‐sensing G‐protein coupled receptor acts to promote neuronal differentiation and homing during cerebellar maturation. These findings together with those of others also suggest that CaSR/integrin complexes act to transduce extracellular calcium signals into cellular movement, and may function in this capacity as a universal cell migration/homing complex in the developing brain. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 375–389, 2016  相似文献   

5.
6.
Neurogenesis in the cerebellum proceeds through a temporal series of cell production from two separate epithelia, the ventricular zone (VZ) and the external granule cell layer (EGL). Using the laacZ cell lineage tracer in transgenic mice, we describe cellular clones whose dates of birth span the entire period of cerebellar development and deduce a sequence of cell dispersion leading to the final allocation of cells in the cerebellum. Clones probably labeled early during neural tube formation show that individual progenitors can give rise to all cerebellar cell types. The distribution of clonally related granule cells in these clones indicates a mediolateral organization of EGL progenitors already established before the allocation of the EGL progenitors to the cerebellum. Clones restricted to the cerebellar VZ show that the VZ derives progenitors for deep nuclei and multipotent cortical progenitors, which lose their systematic lineage relationship when longitudinal cell intermingling in the cerebellar VZ becomes more limited. The small clones also show that cell dispersion is radial in the internal granule layer and tangential in the molecular layer. Together, the data demonstrate the broad maintenance of the relative order of cells from neural tube stages to the adult cerebellum.  相似文献   

7.
Postnatal cerebellum development involves the generation of granule cells and Bergmann glias (BGs). The granule cell precursors are located in the external germinal layer (EGL) and the BG precursors are located in the Purkinje layer (PL). BGs extend their glial fibers into the EGL and facilitate granule cells' inward migration to their final location. Growth arrest specific gene 1 (Gas1) has been implicated in inhibiting cell-cycle progression in cell culture studies (G. Del Sal et al., 1992, Cell 70, 595--607). However, its growth regulatory function in the CNS has not been described. To investigate its role in cerebellar growth, we analyzed the Gas1 mutant mice. At birth, wild-type and mutant mice have cerebella of similar size; however, mature mutant cerebella are less than half the size of wild-type cerebella. Molecular and cellular examinations indicate that Gas1 mutant cerebella have a reduced number of granule cells and BG fibers. We provide direct evidence that Gas1 is required for normal levels of proliferation in the EGL and the PL, but not for their differentiation. Furthermore, we show that Gas1 is specifically and coordinately expressed in both the EGL and the BGs postnatally. These results support Gas1 as a common genetic component in coordinating EGL cell and BG cell proliferation, a link which has not been previously appreciated.  相似文献   

8.
Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/-) Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in Ptch1(+/-) Nos2(-/) (-) mice relative to Ptch1(+/-) Nos2(+/+) mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/-) mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression.  相似文献   

9.
10.
Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.  相似文献   

11.
The control of neuronal number is critical for coordinating innervation and target organ requirements. Although basic fibroblast growth factor (bFGF) is known to regulate neuron number in the developing embryonic cortex, its potential role during postnatal brain development remains undefined. To address this issue, the cerebellum, a site of postnatal neurogenesis, was used. Previously, we found that a single peripheral injection of bFGF in newborn rats elicited mitosis of neuronal precursors in the external germinal layer (EGL) 8 h after administration. We now define the sustained effects of bFGF treatment on postnatal granule cell production and cerebellar growth. Seventy-two h after a single injection of bFGF (20 ng/g) in newborn rats, the fraction of BrdU-labeled cells in the EGL increased by 46% without altering apoptotic cell number, consistent with enhanced precursor proliferation. Moreover, bFGF increased mitotically labeled cells by 100% and total cell density by 33% in the internal granular layer (IGL), the final destination of the EGL precursors. Because cerebellar volume also increased by 22%, bFGF-induced proliferation enhanced generation of total IGL neurons and increased cerebellar growth. These morphometric measures were corroborated independently by using DNA quantitation: cerebellar DNA content increased 16% after bFGF injection, consistent with increased neuron number. Furthermore, using DNA quantitation as an index, increased total cerebellar cell number elicited by bFGF injection persisted beyond the neurogenetic period, until P35. We conclude that a single postnatal injection of bFGF increases granule neuron number and enhances cerebellar growth following mitotic stimulation.  相似文献   

12.
Cerebellar granule cells originate from precursors located in the dorsal region of rhombomere one within the hindbrain of developing embryos. They undergo proliferation for an extensive period well into postnatal stages of development to form the major cell type of the cerebellum, the most populous structure within the mammalian brain. Granule cell development is highly dependent upon the cerebellar environment and contact with neighbouring cells. In recent years, the molecular basis of these interactions has started to be unravelled. Granule cell precursors and the molecular mechanisms involved in controlling their proliferation have been shown to be involved in the pathogenesis of medulloblastoma, the most common malignant pediatric brain tumour. Here, we review the control of granule cell generation with emphasis on the molecular regulators of cell proliferation and differentiation during normal and malignant development.  相似文献   

13.
Purkinje cells (PCs) are the projection neurons of the cerebellar cortex. They receive two major types of synaptic input - that from the inferior olive via climbing fibres and that from the granule neurons via parallel fibres. The precursors of granule neurons proliferate at the surface of the developing cerebellumin the external granule layer (EGL), which persists until postnatal day 14 in the mouse [1]. PCs are thought to provide trophic support for granule neurons [2][3] and to stimulate the proliferation of cells in the EGL [4], but the signalling molecules that mediate these cell-cell interactions have not been identified. I show here that PCs in the developing mouse cerebellum express the gene encoding the morphogen Sonic hedgehog (Shh) and that dividing cells in the EGL express Patched (Ptc) and Gli1, two target genes of which expression is upregulated in response to Hedgehog signalling (see [5] and references therein). Treatment of developing mice with hybridoma cells that secrete neutralizing anti-Shh antibodies [6] disrupted cerebellar development and reduced bromodeoxyuridine (BrdU) incorporation in the EGL of neonatal mice, whereas treatment of dissociated granule neuron cultures with recombinant Shh stimulated BrdU incorporation. These results suggest that PC-derived Shh normally promotes the proliferation of granule neuron precursors in the EGL.  相似文献   

14.
15.
Since testicular orphan nuclear receptor 4 (TR4) was cloned, its physiological function has remained largely unknown. Throughout postnatal development, TR4-knockout (TR4-/-) mice exhibited behavioral deficits in motor coordination, suggesting impaired cerebellar function. Histological examination of the postnatal TR4-/- cerebellum revealed gross abnormalities in foliation; specifically, lobule VII in the anterior vermis was missing. Further analyses demonstrated that the laminations of the TR4-/- cerebellar cortex were changed, including reductions in the thickness of the molecular layer and the internal granule layer, as well as delayed disappearance of the external granule cell layer (EGL). These lamination irregularities may result from interference with granule cell proliferation within the EGL, delayed inward migration of postmitotic granule cells, and a higher incidence of apoptotis. In addition, abnormal development of Purkinje cells was observed in the postnatal TR4-/- cerebellum, as evidenced by aberrant dendritic arborization and reduced calbindin staining intensity. Expression of Pax-6, Sonic Hedgehog (Shh), astrotactin (Astn), reelin, and Cdk-5, genes correlated with the morphological development of the cerebellum, is reduced in the developing TR4-/- cerebellum. Together, our findings suggest that TR4 is required for normal cerebellar development.  相似文献   

16.
CD47 is involved in neurite differentiation in cultured neurons, but the function of CD47 in brain development is largely unknown. We determined that CD47 mRNA was robustly expressed in the developing cerebellum, especially in granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells individually become postmitotic and migrate, leading to neurite fasciculation. At postnatal day 8 (P8), CD47 knockout mice exhibited an increased number of proliferating granule cells in the EGL, whereas the CD47 agonist peptide 4N1K increased the number of postmitotic cells in primary granule cells. Knocking out the CD47 gene and anti‐CD47 antibody impaired the radial migration of granule cells from the EGL to the IGL individually in mice and slice cultures. In primary granule cells, knocking out CD47 reduced the number of axonal collaterals and dendritic branches; by contrast, overexpressing CD47 or 4N1K treatment increased the axonal length and numbers of axonal collaterals and dendritic branches. Furthermore, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice at P21 and at 14 wk after birth. Lastly, CD47 knockout mice exhibited increased social interaction at P21 and depressive‐like behaviors at 10 wk after birth. Our study revealed that the cell adhesion molecule CD47 participates in multiple phases of granule cell development, including proliferation, migration, and neurite differentiation implying that aberrations of CD47 are risk factors that cause abnormalities in cerebellar development and atypical behaviors.© 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 463–484, 2015  相似文献   

17.
The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition, WNT pathway mutations are associated with medulloblastoma, the most common malignant brain tumor in children. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover, mice that express activated β-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region, whereas expression of the same protein in GNPs impairs proliferation. Although β-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.  相似文献   

18.
Medulloblastoma, the most common malignant brain tumor of childhood, is believed to derive from immature granule neuron precursors (GNPs) that normally proliferate in the external granule layer before exiting the cell cycle and migrating to their mature location in the inner granule layer. In this study, we examined the expression of D type cyclins in GNPs during cerebellar development and showed that GNPs in early development expressed only cyclin D1, whereas later GNPs expressed both cyclins D1 and D2. Coinciding with the period of cyclin D1-only expression, Ccnd1(-/-) mice showed reduced proliferation of GNPs and impaired growth of the cerebellum. Interestingly, removal of cyclin D1 was sufficient to drastically reduce the incidence of medulloblastoma in Ptch1(+/-) mice, despite the fact that these tumors showed upregulation of both cyclins D1 and D2. We showed that cyclin D1 has an earlier role in tumorigenesis: in the absence of cyclin D1, the incidence and overall volume of ;preneoplastic' lesions were significantly decreased. We propose a model that links a role of cyclin D1 in normal GNP proliferation with its early role in tumorigenesis.  相似文献   

19.
Wortham M  Jin G  Sun JL  Bigner DD  He Y  Yan H 《PloS one》2012,7(4):e36211
Dysregulation of Otx2 is a hallmark of the pediatric brain tumor medulloblastoma, yet its functional significance in the establishment of these tumors is unknown. Here we have sought to determine the functional consequences of Otx2 overexpression in the mouse hindbrain to characterize its potential role in medulloblastoma tumorigenesis and identify the cell types responsive to this lineage-specific oncogene. Expression of Otx2 broadly in the mouse hindbrain resulted in the accumulation of proliferative clusters of cells in the cerebellar white matter and dorsal brainstem of postnatal mice. We found that brainstem ectopia were derived from neuronal progenitors of the rhombic lip and that cerebellar ectopia were derived from granule neuron precursors (GNPs) that had migrated inwards from the external granule layer (EGL). These hyperplasias exhibited various characteristics of medulloblastoma precursor cells identified in animal models of Shh or Wnt group tumors, including aberrant localization and altered spatiotemporal control of proliferation. However, ectopia induced by Otx2 differentiated and dispersed as the animals reached adulthood, indicating that factors restricting proliferative lifespan were a limiting factor to full transformation of these cells. These studies implicate a role for Otx2 in altering the dynamics of neuronal progenitor cell proliferation.  相似文献   

20.
The Wnt/β-catenin signaling pathway plays crucial roles in early hindbrain formation, and its constitutive activity is associated with a subset of human medulloblastoma, a malignant childhood tumor of the posterior fossa. However, the precise function of Wnt/β-catenin signaling during cerebellar development is still elusive. We generated Math1-cre::Apc(Fl/Fl) mice with a conditional knockout for the Adenomatosis polyposis coli (Apc) gene that displayed a constitutive activity of Wnt/β-catenin signaling in cerebellar granule neuron precursors. Such mice showed normal survival without any tumor formation but had a significantly smaller cerebellum with a complete disruption of its cortical histoarchitecture. The activation of the Wnt/β-catenin signaling pathway resulted in a severely inhibited proliferation and premature differentiation of cerebellar granule neuron precursors in vitro and in vivo. Mutant mice hardly developed an internal granular layer, and layering of Purkinje neurons was disorganized. Clinically, these mice presented with significantly impaired motor coordination and ataxia. In summary, we conclude that cerebellar granule neurons essentially require appropriate levels of Wnt signaling to balance their proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号