首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正Histone methylation is a kind of important epigenetic modification which occurs on the lysine residue or arginine residue of histone tails(Zhang and Reinberg,2001).It takes part in multiple biological processes,including gene expression,genomic stability,stem cell maturity,genetic imprinting,mitosis and development(Fischle et al.,2005).Abnormal histone methylation pattern may  相似文献   

2.
Metformin, the first drug chosen to be tested in a clinical trial aimed to target the biology of aging per se, has been clinically exploited for decades in the absence of a complete understanding of its therapeutic targets or chemical determinants. We here outline a systematic chemoinformatics approach to computationally predict biomolecular targets of metformin. Using several structure‐ and ligand‐based software tools and reference databases containing 1,300,000 chemical compounds and more than 9,000 binding sites protein cavities, we identified 41 putative metformin targets including several epigenetic modifiers such as the member of the H3K27me3‐specific demethylase subfamily, KDM6A/UTX. AlphaScreen and AlphaLISA assays confirmed the ability of metformin to inhibit the demethylation activity of purified KDM6A/UTX enzyme. Structural studies revealed that metformin might occupy the same set of residues involved in H3K27me3 binding and demethylation within the catalytic pocket of KDM6A/UTX. Millimolar metformin augmented global levels of H3K27me3 in cultured cells, including reversion of global loss of H3K27me3 occurring in premature aging syndromes, irrespective of mitochondrial complex I or AMPK. Pharmacological doses of metformin in drinking water or intraperitoneal injection significantly elevated the global levels of H3K27me3 in the hepatic tissue of low‐density lipoprotein receptor‐deficient mice and in the tumor tissues of highly aggressive breast cancer xenograft‐bearing mice. Moreover, nondiabetic breast cancer patients receiving oral metformin in addition to standard therapy presented an elevated level of circulating H3K27me3. Our biocomputational approach coupled to experimental validation reveals that metformin might directly regulate the biological machinery of aging by targeting core chromatin modifiers of the epigenome.  相似文献   

3.
4.
5.
6.
7.
Combinations of histones carrying different covalent modifications are a major component of epigenetic variation. We have mapped nine modified histones in the barley seedling epigenome by chromatin immunoprecipitation next‐generation sequencing (ChIP‐seq). The chromosomal distributions of the modifications group them into four different classes, and members of a given class also tend to coincide at the local DNA level, suggesting that global distribution patterns reflect local epigenetic environments. We used this peak sharing to define 10 chromatin states representing local epigenetic environments in the barley genome. Five states map mainly to genes and five to intergenic regions. Two genic states involving H3K36me3 are preferentially associated with constitutive gene expression, while an H3K27me3‐containing genic state is associated with differentially expressed genes. The 10 states display striking distribution patterns that divide barley chromosomes into three distinct global environments. First, telomere‐proximal regions contain high densities of H3K27me3 covering both genes and intergenic DNA, together with very low levels of the repressive H3K27me1 modification. Flanking these are gene‐rich interior regions that are rich in active chromatin states and have greatly decreased levels of H3K27me3 and increasing amounts of H3K27me1 and H3K9me2. Lastly, H3K27me3‐depleted pericentromeric regions contain gene islands with active chromatin states separated by extensive retrotransposon‐rich regions that are associated with abundant H3K27me1 and H3K9me2 modifications. We propose an epigenomic framework for barley whereby intergenic H3K27me3 specifies facultative heterochromatin in the telomere‐proximal regions and H3K27me1 is diagnostic for constitutive heterochromatin elsewhere in the barley genome.  相似文献   

8.
9.
10.
11.
Jmjd3 is required for cellular differentiation and senescence, and inhibits the induction of pluripotent stem cells by demethylating histone 3 lysine 27 trimethylation (H3K27me3). Although recent studies reveal crucial biological roles for Jmjd3, it is unclear how its demethylase activity is controlled. Here, we show that nuclear localization of Jmjd3 is required for effective demethylation of H3K27me3. Our subcellular localization analysis of Jmjd3 shows that the N-terminal region of the protein is responsible for its nuclear placement, whereas the C-terminal region harboring the catalytic Jumonji C (JmjC) domain cannot situate into the nucleus. We identify two classical nuclear localization signals (cNLSs) in the N-terminal domain of Jmjd3. Forced nuclear emplacement of the catalytic domain of Jmjd3 by fusion with a heterologous cNLS significantly enhances its H3K27me3 demethylation activity. A dynamic nucleocytoplasmic shuttling of endogenous Jmjd3 occurs in mouse embryonic fibroblasts. Jmjd3 is localized both into the cytoplasm and the nucleus, and its nuclear export is dependent on Exportin-1, as treatment with leptomycin B triggers nuclear accumulation of Jmjd3. These results suggest that the subcellular localization of Jmjd3 is dynamically regulated and has pivotal roles for H3K27me3 status.  相似文献   

12.
《Epigenetics》2013,8(6):834-841
Jmjd3 is required for cellular differentiation and senescence, and inhibits the induction of pluripotent stem cells by demethylating histone 3 lysine 27 trimethylation (H3K27me3). Although recent studies reveal crucial biological roles for Jmjd3, it is unclear how its demethylase activity is controlled. Here, we show that nuclear localization of Jmjd3 is required for effective demethylation of H3K27me3. Our subcellular localization analysis of Jmjd3 shows that the N-terminal region of the protein is responsible for its nuclear placement, whereas the C-terminal region harboring the catalytic Jumonji C (JmjC) domain cannot situate into the nucleus. We identify two classical nuclear localization signals (cNLSs) in the N-terminal domain of Jmjd3. Forced nuclear emplacement of the catalytic domain of Jmjd3 by fusion with a heterologous cNLS significantly enhances its H3K27me3 demethylation activity. A dynamic nucleocytoplasmic shuttling of endogenous Jmjd3 occurs in mouse embryonic fibroblasts. Jmjd3 is localized both into the cytoplasm and the nucleus, and its nuclear export is dependent on Exportin-1, as treatment with leptomycin B triggers nuclear accumulation of Jmjd3. These results suggest that the subcellular localization of Jmjd3 is dynamically regulated and has pivotal roles for H3K27me3 status.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
《Cell reports》2020,30(10):3218-3228.e5
  1. Download : Download high-res image (241KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号