首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate estimation of hepatic necroinflammation caused by chronic hepatitis C (CHC) is crucial for prediction of prognosis and design of therapeutic strategy, which is particularly true for CHC patients with normal alanine aminotransferase (ALT) level. Recent studies have shown that sphingolipids have a close relationship with hepatitis C virus infection. The present study aimed to identify plasma sphingolipids related to hepatic necroinflammation. We included 120 treatment-naïve CHC patients and 64/120 had normal ALT levels (<40 U/L). CHC patients who underwent liver biopsies were subjected to Scheuer scoring analysis for scope of hepatic inflammation. Plasma sphingolipids were detected by high-performance liquid chromatography tandem mass spectrometry. Our results showed 44 plasma sphingolipids were detected altogether. Of all detected sphingolipids, hexosylceramide (HexCer) (d18∶1/22∶0) and HexCer (d18∶1/24∶0) showed a significant difference among G0/G1, G2, and G3/G4 (P<0.05). For identifying hepatic necroinflammation (G≥2), after adjusting other factors, the odds ratio (OR) of HexCer (d18∶1/22∶0) reached 1.01 (95% confidence interval [CI]: 1.00–1.02). Furthermore, the area under the curve (AUC) of HexCer (d18∶1/22∶0) was 0.7 (P = 0.01) and approached that of ALT (AUC = 0.78). However, in CHC patients with normal ALT, HexCer (d18∶1/22∶0) was an independent factor (OR: 1.02, 95% CI: 1.01–1.03) to identify the hepatic necroinflammation (G≥2). HexCer (d18∶1/22∶0) not only showed the largest AUC (0.78, P = 0.001), but also exhibited the highest specificity of all indicators. These results indicate that plasma HexCer (d18∶1/22∶0) is a potential indicator to distinguish hepatic necroinflammation in CHC patients. For CHC with normal ALT, the ability of HexCer (d18∶1/22∶0) to distinguish hepatic necroinflammation might be superior to conventional serum indicators.  相似文献   

2.
White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (Myotis sodalis), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats. It is caused by a cutaneous infection with the fungus Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are much more resistant to cutaneous infection with Pd, however. We thus conducted analyses of wing epidermis from hibernating E. fuscus and M. lucifugus to determine their fatty acid compositions, and laboratory Pd culture experiments at 4.0–13.4°C to determine the effects of these fatty acids on Pd growth. Our analyses revealed that the epidermis of both bat species contain the same 7 fatty acid types (14:0, 15:0, 16:0. 16:1, 18:0, 18:1, & 18:2), but the epidermis of M. lucifugus contains: a) more stearic (18:0) acid, b) less palmitoleic (16:1) acid, c) less myristic (14:0) acid, and, d) less oleic (18:1) acid than that of E. fuscus. The growth of Pd was inhibited by: a) myristic and stearic acids at 10.5–13.4°C, but not at 4.0–5.0°C, b) oleic acid at 5.0–10.6°C, c) palmitoleic acid, and, d) linoleic (18:2) acid at 5.0–10.6°C. One set of factors that enables E. fuscus to better resist cutaneous P. destructans infections (and thus WNS) therefore appears to be the relatively higher myristic, palmitoleic, and oleic acid contents of the epidermis.  相似文献   

3.
Inactivating mutations including both germline and somatic mutations in the adenomatous polyposis coli (APC) gene drives most familial and sporadic colorectal cancers. Understanding the metabolic implications of this mutation will aid to establish its wider impact on cellular behaviour and potentially inform clinical decisions. However, to date, alterations in lipid metabolism induced by APC mutations remain unclear. Intestinal organoids have gained widespread popularity in studying colorectal cancer and chemotherapies, because their 3D structure more accurately mimics an in vivo environment. Here, we aimed to investigate intra-cellular lipid disturbances induced by APC gene mutations in intestinal organoids using a reversed-phase ultra-high-performance liquid chromatography mass spectrometry (RP-UHPLC-MS)-based lipid profiling method. Lipids of the organoids grown from either wild-type (WT) or mice with APC mutations (Lgr5–EGFP-IRES-CreERT2 Apcfl/fl) were extracted and analysed using RP-UHPLC-MS. Levels of phospholipids (e.g. PC(16:0/16:0), PC(18:1/20:0), PC(38:0), PC(18:1/22:1)), ceramides (e.g. Cer(d18:0/22:0), Cer(d42:0), Cer(d18:1/24:1)) and hexosylceramides (e.g. HexCer(d18:1/16:0), HexCer(d18:1/22:0)) were higher in Apcfl/fl organoids, whereas levels of sphingomyelins (e.g. SM(d18:1/14:0), SM(d18:1/16:0)) were lower compared with WT. These observations indicate that cellular metabolism of sphingomyelin was up-regulated, resulting in the cellular accumulation of ceramides and production of HexCer due to the absence of Apcfl/fl in the organoids. Our observations demonstrated lipid profiling of organoids and provided an enhanced insight into the effects of the APC mutations on lipid metabolism, making for a valuable addition to screening options of the organoid lipidome.  相似文献   

4.

Objective

Chronic low-grade inflammation has long been recognized as the central link between obesity and type 2 diabetes (T2D). The novel subset of T helper (Th) cells, Th22, plays an emerging role in chronic inflammation. We investigated the potential association between Th22 and the pathogenesis of obesity and T2D.

Methods

Ninety T2D inpatients (T2D group), 30 healthy participants with BMI ranged from 19 to 23.9 kg/m2 (CTL group) and 30 metabolically healthy obese controls with BMI ≥ 30 kg/m2 (MHO group) were employed in our study. Peripheral frequencies of Th22 and Th1 and Th17 cells were determined by flow cytometry based on their specific cytokine patterns. Cytokine levels in fresh plasma were quantified by ELISA.

Results

Compared to that in CTL group (1.18±0.06%, n = 28), peripheral frequency of Th22 cells was significantly increased in MHO group (1.88±0.10%, n = 30) and in T2D group (2.247±0.10%, n = 89). There was a consistent notable increase in plasma interleukin (IL)-22 of T2D patients [47.56 (30.55–76.89) pg/mL] as compared with that of MHO group [36.65 (29.52–55.70) pg/ml; *P<0.0001] and CTLs [36.33 (31.93–40.62) pg/mL; *P<0.0001]. Furthermore, other than Th1/Th17, previously frequently described participants in obesity and T2D, there was a strong correlation between Th22 frequency and the homeostasis model of assessment for insulin resistance index (r = 0.6771, *P<0.0001) and HOMA for β-cell function (r = −0.7264, *P<0.0001).

Conclusions

There were increased Th22 frequencies and IL-22 levels in obesity and T2D. Elevated Th22 and IL-22 also aided in the differentiation of MHO from T2D patients. The notable correlation implied that Th22 might play a more determinant role in both insulin resistance and β-cell impairment.  相似文献   

5.
Expression of a California bay laurel (Umbellularia californica) 12:0-acyl-carrier protein thioesterase, bay thioesterase (BTE), in developing seeds of oilseed rape (Brassica napus) led to the production of oils containing up to 50% laurate. In these BTE oils, laurate is found almost exclusively at the sn-1 and sn-3 positions of the triacylglycerols (T.A. Voelker, T.R. Hayes, A.C. Cranmer, H.M. Davies [1996] Plant J 9: 229–241). Coexpression of a coconut (Cocos nucifera) 12:0-coenzyme A-preferring lysophosphatitic acid acyltransferase (D.S. Knutzon, K.D. Lardizabal, J.S. Nelsen, J.L. Bleibaum, H.M. Davies, J.G. Metz [1995] Plant Physiol 109: 999–1006) in BTE oilseed rape seeds facilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaurin. The introduction of the coconut protein into BTE oilseed rape lines with laurate above 50 mol % further increases total laurate levels.  相似文献   

6.
IntroductionSphingolipids can be potentially involved in the formation of the central and peripheral nervous systems, which are particularly connected with the pathogenesis of Down syndrome. The aim of the study was to determine the concentration of selected sphingolipids in the plasma and amniotic fluid of pregnant patients with fetal Down syndrome.ResultsWe showed a significant increase in the concentration of 2 ceramides, C22-Cer and C24:1-Cer, in the plasma of women with fetal Down syndrome. Furthermore we showed a decrease in the concentration of 7 ceramides—C16-Cer, C18-Cer, C18:1-Cer, C20-Cer, C22-Cer, C24:1-Cer, and C24-Cer—in the amniotic fluid of women with fetal Down syndrome. We created ROC curves for all significant sphingolipids in maternal plasma, which set the threshold values and allowed for predicting the likelihood of Down syndrome in the fetus with specific sensitivity and specificity. We demonstrated a significantly higher risk of Down syndrome when the plasma concentration of C22-Cer > 12.66 ng/100ul (sens. 0.9, sp. 0.79, P value = 0.0007) and C24:1-Cer > 33,19 ng/100ul (sens. 0.6, sp. 0.86, P value = 0.0194).ConclusionOn the basis of our findings, it seems that the sphingolipids may play a role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on a larger group of patients.  相似文献   

7.
Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.  相似文献   

8.

Background

Some studies have reported associations between five uncoupling protein (UCP) 1–3 polymorphisms and type 2 diabetes mellitus (T2DM). However, other studies have failed to confirm the associations. This paper describes a case-control study and a meta-analysis conducted to attempt to determine whether the following polymorphisms are associated with T2DM: -3826A/G (UCP1); -866G/A, Ala55Val and Ins/Del (UCP2) and -55C/T (UCP3).

Methods

The case-control study enrolled 981 T2DM patients and 534 nondiabetic subjects, all of European ancestry. A literature search was run to identify all studies that investigated associations between UCP1–3 polymorphisms and T2DM. Pooled odds ratios (OR) were calculated for allele contrast, additive, recessive, dominant and co-dominant inheritance models. Sensitivity analyses were performed after stratification by ethnicity.

Results

In the case-control study the frequencies of the UCP polymorphisms did not differ significantly between T2DM and nondiabetic groups (P>0.05). Twenty-three studies were eligible for the meta-analysis. Meta-analysis results showed that the Ala55Val polymorphism was associated with T2DM under a dominant model (OR = 1.27, 95% CI 1.03–1.57); while the -55C/T polymorphism was associated with this disease in almost all genetic models: allele contrast (OR = 1.17, 95% CI 1.02–1.34), additive (OR = 1.32, 95% CI 1.01–1.72) and dominant (OR = 1.18, 95% CI 1.02–1.37). However, after stratification by ethnicity, the UCP2 55Val and UCP3 -55C/T alleles remained associated with T2DM only in Asians (OR = 1.25, 95% CI 1.02–1.51 and OR = 1.22, 95% CI 1.04–1.44, respectively; allele contrast model). No significant association of the -3826A/G, -866G/A and Ins/Del polymorphisms with T2DM was observed.

Conclusions

In our case-control study of people with European ancestry we were not able to demonstrate any association between the UCP polymorphisms and T2DM; however, our meta-analysis detected a significant association between the UCP2 Ala55Val and UCP3 -55C/T polymorphisms and increased susceptibility for T2DM in Asians.  相似文献   

9.
BackgroundWe aimed to investigate the association of serum pentadecanoic acid (15:0), a biomarker of dairy fat intake, with incident cardiovascular disease (CVD) and all-cause mortality in a Swedish cohort study. We also systematically reviewed studies of the association of dairy fat biomarkers (circulating or adipose tissue levels of 15:0, heptadecanoic acid [17:0], and trans-palmitoleic acid [t16:1n-7]) with CVD outcomes or all-cause mortality.Methods and findingsWe measured 15:0 in serum cholesterol esters at baseline in 4,150 Swedish adults (51% female, median age 60.5 years). During a median follow-up of 16.6 years, 578 incident CVD events and 676 deaths were identified using Swedish registers. In multivariable-adjusted models, higher 15:0 was associated with lower incident CVD risk in a linear dose–response manner (hazard ratio 0.75 per interquintile range; 95% confidence interval 0.61, 0.93, P = 0.009) and nonlinearly with all-cause mortality (P for nonlinearity = 0.03), with a nadir of mortality risk around median 15:0. In meta-analyses including our Swedish cohort and 17 cohort, case–cohort, or nested case–control studies, higher 15:0 and 17:0 but not t16:1n-7 were inversely associated with total CVD, with the relative risk of highest versus lowest tertile being 0.88 (0.78, 0.99), 0.86 (0.79, 0.93), and 1.01 (0.91, 1.12), respectively. Dairy fat biomarkers were not associated with all-cause mortality in meta-analyses, although there were ≤3 studies for each biomarker. Study limitations include the inability of the biomarkers to distinguish different types of dairy foods and that most studies in the meta-analyses (including our novel cohort study) only assessed biomarkers at baseline, which may increase the risk of misclassification of exposure levels.ConclusionsIn a meta-analysis of 18 observational studies including our new cohort study, higher levels of 15:0 and 17:0 were associated with lower CVD risk. Our findings support the need for clinical and experimental studies to elucidate the causality of these relationships and relevant biological mechanisms.

Kathy Trieu and co-workers study biomarkers of dairy fat intake and associated health outcomes.  相似文献   

10.
Previously, genetic polymorphisms of C12orf51 (HECTD4) (rs2074356 and/or rs11066280) have been shown to be related to alcohol consumption and type 2 diabetes (T2D). This study aimed to prospectively examine whether C12orf51 had an interaction with or independent effect on alcohol consumption and the risk of T2D. The present study included 3,244 men and 3,629 women aged 40 to 69 years who participated in the Korean Genome and Epidemiology Study (KoGES)_Ansan and Ansung Study. Cox proportional hazards models were used to estimate HRs and 95% CIs for T2D. rs2074356 and rs11066280 were associated with the risk of T2D after adjusting for alcohol consumption (rs2074356 for AA: HR = 0.39 and 95% CI = 0.17–0.87 in men, and HR = 0.36 and 95% CI = 0.13–0.96 in women; rs11066280 for AA: HR = 0.44 and 95% CI = 0.23–0.86 in men, and HR = 0.39 and 95% CI = 0.16–0.94 in women). We identified that the association of each variant (rs2074356 and rs11065756) in C12orf51 was nearly unchanged after adjusted for alcohol consumption. Therefore, the association of 2 SNPs in C12orf51 with diabetes may not be mediated by alcohol use. There was no interaction effect between alcohol consumption and the SNPs with T2D. However, even in never-drinkers, minor allele homozygote strongly influenced T2D risk reduction (rs2074356 for AA: HR = 0.35, 95% CI = 0.14–0.90, and p-trend = 0.0035 in men and HR = 0.34, 95% CI = 0.13–0.93, and p-trend = 0.2348 in women; rs11066280 for AA: HR = 0.36, 95% CI = 0.16–0.82, and p-trend = 0.0014 in men and HR = 0.39, 95% CI = 0.16–0.95, and p-trend = 0.3790 in women), while alcohol consumption did not influence the risk of T2D within each genotype. rs2074356 and rs11066280 in or near C12orf51, which is related to alcohol drinking behavior, may longitudinally decrease the risk of T2D, but not through regulation of alcohol consumption.  相似文献   

11.
BackgroundObesity is a significant and growing public health problem in high-income countries. Little is known about the relationship between resistance exercise (RE), alone and in combination with aerobic exercise (AE), and the risk of developing obesity. The purpose of this prospective cohort study was to examine the associations between different amounts and frequencies of RE, independent of AE, and incident obesity.Methods and findingsParticipants were 11,938 healthy adults ages 18–89 years with a BMI < 30 kg/m2 at baseline who completed at least 2 clinical examinations during 1987–2005 as part of the Aerobics Center Longitudinal Study. Self-reported RE participation in minutes/week and days/week was collected from a standardized questionnaire. Incident obesity was defined as a BMI ≥ 30 kg/m2 at follow-up. Incident obesity was also defined by waist circumference (WC) > 102/88 cm for men/women and percent body fat (PBF) ≥ 25%/30% for men/women at follow-up in participants who were not obese by WC (n = 9,490) or PBF (n = 8,733) at baseline. During the average 6-year follow-up, 874 (7%), 726 (8%), and 1,683 (19%) developed obesity defined by BMI, WC, or PBF, respectively. Compared with no RE, 60–119 min/wk of RE was associated with 30%, 41%, and 31% reduced risk of obesity defined by BMI (hazard ratio [95% CI], 0.70 [0.54–0.92], p = 0.008), WC (0.59 [0.44–0.81], p < 0.001), and PBF (0.69 [0.57–0.83], p < 0.001), respectively, after adjusting for confounders including age, sex, examination year, smoking status, heavy alcohol consumption, hypertension, hypercholesterolemia, diabetes, and AE. Compared with not meeting the RE guidelines of ≥2 d/wk, meeting the RE guidelines was associated with 18%, 30%, and 30% reduced risk of obesity defined by BMI (hazard ratio [95% CI], 0.82 [0.69–0.97], p = 0.02), WC (0.70 [0.57–0.85], p < 0.001), and PBF (0.70 [0.62–0.79], p < 0.001), respectively. Compared with meeting neither guideline, meeting both the AE and RE guidelines was associated with the smallest hazard ratios for obesity. Limitations of this study include limited generalizability as participants were predominantly white men from middle to upper socioeconomic strata, use of self-reported RE, and lack of detailed diet data for the majority of participants.ConclusionsIn this study, we observed that RE was associated with a significantly reduced risk of obesity even after considering AE. However, meeting both the RE and AE guidelines was associated with the lowest risk of obesity.

In a prospective cohort study, Angelique G. Brellenthin and colleagues investigate associations between resistance and aerobic exercise, and incident obesity in the United States.  相似文献   

12.
BackgroundAir pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship.Methods and findingsA total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants.ConclusionsWe found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.

Xiang Li and co-workers study the potential influence of obesity on associations between air pollutants and incidence of type 2 diabetes.  相似文献   

13.

Background

Trichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60–70°C.

Results

A B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50–70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes.

Conclusion

Structure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0118-z) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
BackgroundThe role of fat quantity and quality in type 2 diabetes (T2D) prevention is controversial. Thus, this systematic review and meta-analysis aimed to investigate the associations between intake of dietary fat and fatty acids and T2D, and to evaluate the certainty of evidence.Methods and findingsWe systematically searched PubMed and Web of Science through 28 October 2019 for prospective observational studies in adults on the associations between intake of dietary fat and fatty acids and T2D incidence. The systematic literature search and data extraction were conducted independently by 2 researchers. We conducted linear and nonlinear random effects dose–response meta-analyses, calculated summary relative risks (SRRs) with their corresponding 95% confidence intervals (95% CIs), and assessed the certainty of evidence. In total, 15,070 publications were identified in the literature search after the removal of duplicates. Out of the 180 articles screened in full text, 23 studies (19 cohorts) met our inclusion criteria, with 11 studies (6 cohorts) conducted in the US, 7 studies (7 cohorts) in Europe, 4 studies (5 cohorts) in Asia, and 1 study (1 cohort) in Australia. We mainly observed no or weak linear associations between dietary fats and fatty acids and T2D incidence. In nonlinear dose–response meta-analyses, the protective association for vegetable fat and T2D was steeper at lower levels up to 13 g/d (SRR [95% CI]: 0.81 [0.76; 0.88], pnonlinearity = 0.012, n = 5 studies) than at higher levels. Saturated fatty acids showed an apparent protective association above intakes around 17 g/d with T2D (SRR [95% CI]: 0.95 [0.90; 1.00], pnonlinearity = 0.028, n = 11). There was a nonsignificant association of a decrease in T2D incidence for polyunsaturated fatty acid intakes up to 5 g/d (SRR [95% CI]: 0.96 [0.91; 1.01], pnonlinearity = 0.023, n = 8), and for alpha-linolenic acid consumption up to 560 mg/d (SRR [95% CI]: 0.95 [0.90; 1.00], pnonlinearity = 0.014, n = 11), after which the curve rose slightly, remaining close to no association. The association for long-chain omega-3 fatty acids and T2D was approximately linear for intakes up to 270 mg/d (SRR [95% CI]: 1.10 [1.06; 1.15], pnonlinearity < 0.001, n = 16), with a flattening curve thereafter. Certainty of evidence was very low to moderate. Limitations of the study are the high unexplained inconsistency between studies, the measurement of intake of dietary fats and fatty acids via self-report on a food group level, which is likely to lead to measurement errors, and the possible influence of unmeasured confounders on the findings.ConclusionsThere was no association between total fat intake and the incidence of T2D. However, for specific fats and fatty acids, dose–response curves provided insights for significant associations with T2D. In particular, a high intake of vegetable fat was inversely associated with T2D incidence. Thus, a diet including vegetable fat rather than animal fat might be beneficial regarding T2D prevention.

Manuela Neuenschwander and colleagues study associations between intake of different types of fat and incidence of type 2 diabetes.  相似文献   

16.
AimWe performed a comprehensive meta-analysis to determine the association between P2X7 -762T/C polymorphism and pulmonary tuberculosis susceptibility.MethodologyBased on comprehensive searches of the PubMed, SCI, Elsevier, China National Knowledge Infrastructure (CNKI) and Wanfang Database, we identified eligible studies about the association between P2X7 -762T/C polymorphism and pulmonary tuberculosis risk. Pooled odds ratio (ORs) and 95% confidence intervals (95%CIs) were calculated in random-effects model.ResultsA total of 2207 tuberculosis cases and 2220 controls in 8 case-control studies were included in this meta-analysis. Allele model (C vs. T: p = 0.15; OR = 0.83, 95% CI = 0.65–1.07), homozygous model (CC vs. TT: p = 0.23; OR = 0.73, 95% CI = 0.44 to 1.22), and heterozygous model (CT vs. TT: p = 0.57; OR = 0.92, 95% CI = 0.68 to 1.24) did not show increased risk of developing pulmonary tuberculosis. Similarly, dominant model (CC+CT vs. TT: p = 0.32; OR = 0.84, 95% CI = 0.59 to 1.19) and recessive model (CC vs. CT+TT: p = 0.08; OR = 0.77, 95% CI = 0.57 to 1.04) failed to show increased risk of developing pulmonary tuberculosis. Subgroup analysis by ethnicity did not detect any significant association between P2X7–762T/C polymorphism and pulmonary tuberculosis susceptibility.ConclusionsP2X7 -762T/C gene polymorphism is not associated with pulmonary tuberculosis susceptibility.  相似文献   

17.
18.
Glucagon like peptide-1 (GLP-1) regulates glucose mediated-insulin secretion, nutrient accumulation, and β-cell growth. Despite the potential therapeutic usage for type 2 diabetes (T2D), GLP-1 has a short half-life in vivo (t1/2 <2 min). In an attempt to prolong half-life, GLP-1 fusion proteins were genetically engineered: GLP-1 human serum albumin fusion (GLP-1/HSA), AGLP-1/HSA which has an additional alanine at the N-terminus of GLP-1, and AGLP-1-L/HSA, in which a peptide linker is inserted between AGLP-1 and HSA. Recombinant fusion proteins secreted from the Chinese Hamster Ovary-K1 (CHO-K1) cell line were purified with high purity (>96%). AGLP-1 fusion protein was resistant against the dipeptidyl peptidase-IV (DPP-IV). The fusion proteins activated cAMP-mediated signaling in rat insulinoma INS-1 cells. Furthermore, a C57BL/6N mice pharmacodynamics study exhibited that AGLP-1-L/HSA effectively reduced blood glucose level compared to AGLP-1/HSA. [BMB Reports 2013; 46(12): 606-610]  相似文献   

19.
20.
Lipoprotein (a) [Lp(a)], an LDL-like particle, has been proposed as a causal risk factor for CVD among general populations. Meanwhile, both serum Lp(a) and diabetes increase the risk of CVD. However, the relationship between serum Lp(a) and T2D is poorly characterized, especially in the Asian population. Therefore, we conducted a cross-sectional study in 10,122 participants aged 40 years or older in Jiading District, Shanghai, China. Our study found that the prevalence of T2D was decreased from 20.9% to 15.0% from the lowest quartile to the highest quartile of serum Lp(a) concentrations (P for trend <0.0001). Logistic regression analyses showed that the odds ratios and 95% confidence intervals of prevalent T2D for quartiles 2–4 versus quartile 1 were 0.86 (0.73–1.01), 0.88 (0.75–1.04), and 0.76 (0.64–0.90) (P for trend = 0.0002), after adjustment for traditional confounding factors. Moreover, the risks for prevalent prediabetes, insulin resistance, and hyperinsulinemia were also decreased from the lowest to the top quartile. This inverse association between serum Lp(a) and T2D was not appreciably changed after we adjusted hypoglycemic medications or excluded the subjects with hypoglycemic and/or lipid-lowering agents and/or a history of self-reported CVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号