首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the effects of non-resisted (NRS) and partner-towing resisted (RS) sprint training on legs explosive force, sprint performance and sprint kinematic parameters. Sixteen young elite soccer players (age 16.6 ± 0.2 years, height 175.6 ± 5.7 cm, and body mass 67.6 ± 8.2 kg) were randomly allocated to two training groups: resisted sprint RS (n = 7) and non-resisted sprint NRS (n = 9). The RS group followed a six-week sprint training programme consisting of two “sprint training sessions” per week in addition to their usual soccer training. The NRS group followed a similar sprint training programme, replicating the distances of sprints but without any added resistance. All players were assessed before and after training: vertical and horizontal jumping (countermovement jump (CMJ), squat jump (SJ), and 5-jump test (5JT)), 30 m sprint performance (5, 10, and 20 m split times), and running kinematics (stride length and frequency). In the RS group significant (p < 0.05) changes were: decreased sprint time for 0–5 m, 0–10 m and 0–30 m (-6.31, -5.73 and -2.00%; effect size (ES) = 0.70, 1.00 and 0.41, respectively); higher peak jumping height (4.23% and 3.59%; ES = 0.35 and 0.37, for SJ and CMJ respectively); and 5JT (3.10%; ES = 0.44); and increased stride frequency (3.96%; ES = 0.76). In the NRS group, significant (p < 0.05) changes were: decreased sprint time at 0–30 m (-1.34%, ES = 0.33) and increased stride length (1.21%; ES = 0.17). RS training (partner towing) for six weeks in young soccer players showed more effective performances in sprint, stride frequency and lower-limb explosive force, while NRS training improved sprint performance at 0–30 m and stride length. Consequently, coaches and physical trainers should consider including RS training as part of their sprint training to ensure optimal sprint performance.  相似文献   

2.
The study aimed to evaluate the effects of 1 vs. 2 sessions per week of equal-volume sprint training on explosive, high-intensity and endurance-intensive performances among young soccer players. Thirty-six young male soccer players were randomly divided into 2 experimental groups that performed either a single weekly sprint training session (ST1, n = 18, age: 17.2 ± 0.8 years) or two weekly sprint training sessions (ST2, n = 18; age: 17.1 ± 0.9 years) of equal weekly and total volume, in addition to their regular soccer training regimen. Linear sprinting (10 m, 20 m, 30 m, and flying 10 m), T-test agility, countermovement jump (CMJ) and maximal oxygen consumption were assessed one week before (T1), in the middle (T2) and immediately after the 10 weeks of training (T3). A large magnitude and statistically significant main effect for time was found in all the assessed variables after both training interventions (all p < 0.001; ES ≥ 0.80). No main effect was observed between the 2 groups at any time in linear sprinting, T-test or CMJ test (p > 0.05; ES < 0.20). A significant interaction effect (F = 4.05; p = 0.04, ES = 0.21) was found for maximal oxygen consumption with ST2 inducing better performance than ST1 (p = 0.001; ES = 1.11). Our findings suggested that the two sprint training frequencies were effective in enhancing explosive, high-intensity and endurance-intensive performances. However, it is recommended for coaches and fitness coaches to use a biweekly sprint training modality as it was found to be more effective in improving endurance-intensive performance.  相似文献   

3.
This study aimed to develop a physical profile of international cricketers, and investigate if positional differences exist between bowlers and batters. Nineteen, international male cricketers, eleven bowlers (age 24.1 ± 5.2 years; height 179.73 ± 5.27 cm; weight 73.64 ± 6.65 kg), and eight batters (age 22.9 ± 3.8 years; height 180.25 ± 5.57 cm; weight 77.01 ± 8.99 kg) participated in this study. The physical test battery included; power, speed, strength and aerobic fitness tests. Batters demonstrated significantly higher scores for the countermovement jump (p < 0.03; ES = -1.55) and squat jump (p < 0.03; ES = -0.98). Furthermore, batters showed non-significant but small ES for faster 0–5 m (ES = 0.40) and 0–10 m (ES = 0.35) sprint times, superior hand grip strength (ES = -0.20), and higher Yo-Yo intermittent recovery test scores (ES = -0.46). Bowlers showed non-significant but small ES for faster 5 km time trials (ES = -0.51), lower bodyweight (ES = -0.42) and lower body fat percentage (ES = -0.30). However, intra-positional (i.e., seam and spin bowlers) and individual differences amongst players were observed. The physical profiles presented in this study can be used by coaches responsible for the physical development of cricket players to compare their existing data with. Furthermore, it is recommended that practitioners account for individual physical fitness profiles in addition to team profiles, to effectively design and evaluate tailored programs, with the aim of improving both physical and cricket performance.  相似文献   

4.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

5.

Aim

Our study aimed to investigate changes of different markers for routine assessment of fatigue and recovery in response to high-intensity interval training (HIIT).

Methods

22 well-trained male and female team sport athletes (age, 23.0 ± 2.7 years; V̇O2max, 57.6 ± 8.6 mL·min·kg−1) participated in a six-day running-based HIIT-microcycle with a total of eleven HIIT sessions. Repeated sprint ability (RSA; criterion measure of fatigue and recovery), countermovement jump (CMJ) height, jump efficiency in a multiple rebound jump test (MRJ), 20-m sprint performance, muscle contractile properties, serum concentrations of creatinkinase (CK), c-reactive protein (CRP) and urea as well as perceived muscle soreness (DOMS) were measured pre and post the training program as well as after 72 h of recovery.

Results

Following the microcycle significant changes (p < 0.05) in RSA as well as in CMJ and MRJ performance could be observed, showing a decline (%Δ ± 90% confidence limits, ES = effect size; RSA: -3.8 ± 1.0, ES = -1.51; CMJ: 8.4 ± 2.9, ES = -1.35; MRJ: 17.4 ± 4.5, ES = -1.60) and a return to baseline level (RSA: 2.8 ± 2.6, ES = 0.53; CMJ: 4.1 ± 2.9, ES = 0.68; MRJ: 6.5 ± 4.5, ES = 0.63) after 72 h of recovery. Athletes also demonstrated significant changes (p < 0.05) in muscle contractile properties, CK, and DOMS following the training program and after the recovery period. In contrast, CRP and urea remained unchanged throughout the study. Further analysis revealed that the accuracy of markers for assessment of fatigue and recovery in comparison to RSA derived from a contingency table was insufficient. Multiple regression analysis also showed no correlations between changes in RSA and any of the markers.

Conclusions

Mean changes in measures of neuromuscular function, CK and DOMS are related to HIIT induced fatigue and subsequent recovery. However, low accuracy of a single or combined use of these markers requires the verification of their applicability on an individual basis.  相似文献   

6.
The purpose of this study was to compare the effects of Small-Sided Games (SSG) vs. Interval Training (IT) in soccer training on aerobic fitness and physical enjoyment in youth elite soccer players during the last 8 weeks of the season. Seventeen U-16 male soccer players (age = 15.5 ± 0.6 years, and 8.5 years of experience) of a Spanish First Division club academy were randomized to 2 different groups for 6 weeks: SSG group (n = 9) and IT group (n = 8). In addition to the usual technical and tactical sessions and competitive games, the SSG group performed 11 sessions with different SSGs, whereas the IT group performed the same number of sessions of IT. Players were tested before and after the 6-week training intervention with a continuous maximal multistage running field test and the counter movement jump test (CMJ). At the end of the study, players answered the physical activity enjoyment scale (PACES). During the study, heart rate (HR) and session perceived effort (sRPE) were assessed. SSGs were as effective as IT in maintaining the aerobic fitness in elite young soccer players during the last weeks of the season. Players in the SSG group declared a greater physical enjoyment than IT (P = 0.006; ES = 1.86 ± 1.07). Coaches could use SSG training during the last weeks of the season as an option without fear of losing aerobic fitness while promoting high physical enjoyment.  相似文献   

7.
Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.  相似文献   

8.
Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players.  相似文献   

9.
The purpose of this study was to determine the effects of recreational soccer (SOC) compared to moderate-intensity continuous running (RUN) on all health-related physical fitness components in healthy untrained men. Sixty-nine participants were recruited and randomly assigned to one of three groups, of which sixty-four completed the study: a soccer training group (SOC; n = 20, 34±4 (means±SD) years, 78.1±8.3 kg, 179±4 cm); a running group (RUN; n = 21, 32±4 years, 78.0±5.5 kg, 179±7 cm); or a passive control group (CON; n = 23, 30±3 years, 76.6±12.0 kg, 178±8 cm). The training intervention lasted 12 weeks and consisted of three 60-min sessions per week. All participants were tested for each of the following physical fitness components: maximal aerobic power, minute ventilation, maximal heart rate, squat jump (SJ), countermovement jump with arm swing (CMJ), sit-and-reach flexibility, and body composition. Over the 12 weeks, VO2max relative to body weight increased more (p<0.05) in SOC (24.2%, ES = 1.20) and RUN (21.5%, ES = 1.17) than in CON (-5.0%, ES = -0.24), partly due to large changes in body mass (-5.9, -5.7 and +2.6 kg, p<0.05 for SOC, RUN and CON, respectively). Over the 12 weeks, SJ and CMJ performance increased more (p<0.05) in SOC (14.8 and 12.1%, ES = 1.08 and 0.81) than in RUN (3.3 and 3.0%, ES = 0.23 and 0.19) and CON (0.3 and 0.2%), while flexibility also increased more (p<0.05) in SOC (94%, ES = 0.97) than in RUN and CON (0–2%). In conclusion, untrained men displayed marked improvements in maximal aerobic power after 12 weeks of soccer training and moderate-intensity running, partly due to large decreases in body mass. Additionally soccer training induced pronounced positive effects on jump performance and flexibility, making soccer an effective broad-spectrum fitness training intervention.  相似文献   

10.
The purpose of this study was to compare physical demands during the most demanding scenarios (MDS) of different training sessions and official matches in professional basketball players across playing positions. Thirteen professional basketball players were monitored over a 9-week competitive season using a local positioning system. Peak physical demands included total distance, distance covered at > 18 km·h-1, distance and number of accelerations (≥ 2 m∙s-2) and decelerations (≤ -2 m∙s-2) over a 60-second epoch. Analysis of variance for repeated measures, Bonferroni post-hoc tests and standardised Cohen’s effect size (ES) were calculated. Overall, almost all physical demands during the MDS of training were lower (-6.2% to -35.4%) compared to official matches. The only variable that surpassed competition demands was distance covered at > 18 km·h-1, which presented moderate (ES = 0.61, p = 0.01) and small (ES = 0.48, p > 0.05) increases during training sessions four and three days before a competition, respectively. Conversely, the two previous practices before match day presented trivial to very large decreases (ES = 0.09–2.66) in all physical demands. Furthermore, centres achieved the lowest peak value in total distance covered during matches, forwards completed the greatest peak distance at > 18 km·h-1, and guards performed the greatest distance and number of high-intensity accelerations and decelerations. In conclusion, physical demands during the MDS of different training sessions across the microcycle failed to match or surpass peak values during official matches, which should be considered when prescribing a training process intended to optimise the MDS of match play.  相似文献   

11.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

12.
Elastic band assisted and resisted jump training may be a novel way to develop lower-body power. The purpose of this investigation was to (a) determine the kinetic differences between assisted, free, and resisted countermovement jumps and (b), investigate the effects of contrast training using either assisted, free, or resisted countermovement jump training on vertical jump performance in well-trained athletes. In part 1, 8 recreationally trained men were assessed for force output, relative peak power (PP·kg(-1)) and peak velocity during the 3 types of jump. The highest peak force was achieved in the resisted jump method, while PP·kg(-1) and peak velocity were greatest in the assisted jump. Each type of jump produced a different pattern of maximal values of the variables measured, which may have implications for developing separate components of muscular power. In part 2, 28 professional rugby players were assessed for vertical jump height before and after 4 weeks of either assisted (n = 9), resisted (n = 11), or free (n = 8) countermovement jump training. Relative to changes in the control group (1.3 ± 9.2%, mean ± SD), there were clear small improvements in jump height in the assisted (6.7 ± 9.6%) and the resisted jump training group (4.0 ± 8.8%). Elastic band assisted and resisted jump training are both effective methods for improving jump height and can be easily implemented into current training programs via contrast training methods or as a part of plyometric training sessions. Assisted and resisted jump training is recommended for athletes in whom explosive lower-body movements such as jumping and sprinting are performed as part of competition.  相似文献   

13.
Monitoring workload is critical for elite training and competition, as well as preventing potential sports injuries. The assessment of external load in team sports has been provided with new technologies that help coaches to individualize training and optimize their team’s playing system. In this study we characterized the physical demands of an elite handball team during an entire sports season. Novel data are reported for each playing position of this highly strenuous body-contact team sport. Sixteen world top players (5 wings, 2 centre backs, 6 backs, 3 line players) were equipped with a local positioning system (WIMU PRO) during fourteen official Spanish first league matches. Playing time, total distance covered at different running speeds, and acceleration variables were monitored. During a handball match, wings cover the greater distance by high-speed running (> 5.0 m·s-1): 410.3 ± 193.2 m, and by sprint (> 6.7 m·s-1): 98.0 ± 75.4 m. Centre backs perform the following playing position that supports the highest speed intensities during the matches: high-speed running: 243.2 ± 130.2 m; sprint: 62.0 ± 54.2 m. Centre backs also register the largest number of high-intensity decelerations (n = 142.7 ± 59.5) compared to wings (n = 112.9 ± 56.0), backs (n = 105.2 ± 49.2) and line players: 99.6 ± 28.9). This study provides helpful information for professional coaches and their technical staff to optimize training load and individualize the physical demands of their elite male handball players depending on each playing position.  相似文献   

14.
The purpose of this study was to quantify movement demands of elite international age grade (U20) rugby union players during competitive tournament match play. Forty elite professional players from an U20 international performance squad were monitored using 10Hz global positioning systems (GPS) during 15 international tournament matches during the 2014/15 and 2015/16 seasons. Data on distances, velocities, accelerations, decelerations, high metabolic load (HML) distance and efforts, and number of sprints were derived. Data files from players who played over 60 min (n = 161) were separated firstly into Forwards and Backs, and more specifically into six positional groups; FR—Front Row (prop & hooker), SR—Second Row, BR—Back Row (Flankers & No.8), HB—Half Backs (scrum half & outside half), MF—Midfield (centres), B3 –Back Three (wings & full back) for match analysis. Analysis revealed significant differences between forwards and backs positions. Backs scored higher on all variables measured with the exception of number of moderate accelerations, decelerations (no difference). The centres covered the greatest total distance with the front row covering the least (6.51 ± 0.71 vs 4.97 ± 0.75 km, p < 0.001). The front row also covered the least high speed running (HSR) distance compared to the back three (211.6 ± 112.7 vs 728.4 ± 150.2 m, p < 0.001) who covered the most HSR distance, affirming that backs cover greater distances but forwards have greater contact loads. These findings highlight for the first time differences in the movement characteristics of elite age grade rugby union players specific to positional roles.  相似文献   

15.
The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001), a WBV use effect (p<0.001) and a discipline effect (p<0.001). Significantly greater improvements in the SJ (p<0.001) and CMJ (p<0.001) and in 1RM (p<0.001) were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind) were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively). It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players.  相似文献   

16.
The aims of the present study were to compare the effects of 1) training at 90 and 100% sprint velocity and 2) supervised versus unsupervised sprint training on soccer-specific physical performance in junior soccer players. Young, male soccer players (17 ±1 yr, 71 ±10 kg, 180 ±6 cm) were randomly assigned to four different treatment conditions over a 7-week intervention period. A control group (CON, n=9) completed regular soccer training according to their teams’ original training plans. Three training groups performed a weekly repeated-sprint training session in addition to their regular soccer training sessions performed at A) 100% intensity without supervision (100UNSUP, n=13), B) 90% of maximal sprint velocity with supervision (90SUP, n=10) or C) 90% of maximal sprint velocity without supervision (90UNSUP, n=13). Repetitions x distance for the sprint-training sessions were 15x20 m for 100UNSUP and 30x20 m for 90SUP and 90UNSUP. Single-sprint performance (best time from 15x20 m sprints), repeated-sprint performance (mean time over 15x20 m sprints), countermovement jump and Yo-Yo Intermittent Recovery Level 1 (Yo-Yo IR1) were assessed during pre-training and post-training tests. No significant differences in performance outcomes were observed across groups. 90SUP improved Yo-Yo IR1 by a moderate margin compared to controls, while all other effect magnitudes were trivial or small. In conclusion, neither weekly sprint training at 90 or 100% velocity, nor supervised sprint training enhanced soccer-specific physical performance in junior soccer players.  相似文献   

17.
During the COVID-19 lockdown, professional soccer players ceased their regular team training sessions and were provided with exercise programs to follow independently. This investigation assessed the impact of a 7-week COVID-19 lockdown and home-based individual physical training on professional soccer players’ body composition and physical fitness. The study consisted of nineteen division 1 elite soccer players (age 27.68 ± 5.99 years, height 178.47 ± 5.44 cm) and compared the anthropometric and physical fitness parameters obtained post-transition period to those obtained post-COVID-19 lockdown. The statistical analysis indicated that body fat percentage was significantly higher after the lockdown period [t(18) = -5.59, p < 0.01, d = 0.56]. Furthermore, VO2max [t(17) = -11.54, p < 0.01, d = 0.57] and running time [t(17) = 3.94, p < 0.01, d = 0.76] values were significantly higher after the COVID-19 lockdown than those obtained after the transition period. In addition, significantly higher level of performance was demonstrated on squat jump [t(18) = -4.10, p < 0.01, d = 0.30], countermovement jump [t(18) = -7.43, p < 0.01, d = 1.11] and sit and reach tests [t(19) = -5.33, p < 0.01, d = 0.32]. Concurrently, lower body strength was indicated to be significantly greater (p < 0.01) following the COVID-19 lockdown. The training protocol provided during the confinement, due to the COVID-19 outbreak, was effective in keeping physical fitness at a significantly higher level compared to the transition period. Coaches and trainers are encouraged to examine the effectiveness of this protocol, as it may help them develop effective periodization programs during the transition period. This protocol may aid in the development of effective periodization programs that require minimal equipment and can be followed in similar situations.  相似文献   

18.
Quantifying external load during futsal competition can provide objective data for the management of the athlete’s performance and late-stage rehabilitation. This study aimed to report the match external load collected via wearable technology according to time periods (i.e., halves) and contextual factors (i.e., team’s ranking, match result, and location) in elite futsal. Nine professional male players used a GPS-accelerometer unit during all games of the 2019–2020 season. Player load (PL), PL·min-1, high-intensity acceleration (ACCHI), deceleration (DECHI), explosive movements (EXPL-MOV), and change of direction (CODHI) data were collected. On average, players displayed values of: total PL 3868 ± 594 a.u; PL·min-1: 10.8 ± 0.8 a.u; number of ACCHI: 73.3 ± 13.8, DECHI: 68.6 ± 18.8, EXPL-MOV: 1165 ± 188 and CODHI: 173 ± 29.1. A moderate and significant decrease was found in the 2nd half for total PL (p = 0.03; ES = 0.52), PL·min-1 (p = 0.001; ES = 1.16), DECHI (p = 0.001; ES = 0.83), and EXPL-MOV (p = 0.017; ES = 0.58) compared to the 1st half. Small and nonsignificant differences were found between contextual factors. In summary, this study indicates that futsal players are exposed to high-intensity mechanical external loads, and perform a great number of ACCHI, DECHI, EXPL-MOV and CODHI, without being influenced by the team ranking, result and match location. Coaches and sports scientists are advised to implement speed-power, DEC, and COD activities in the training sessions, and may use these reference values to design specific training and return-to-play plans.  相似文献   

19.
The present study investigated the influence of a 12-week electromyostimulation (EMS) training program performed by elite rugby players. Twenty-five rugby players participated in the study, 15 in an electrostimulated group and the remaining 10 in a control group. EMS was conducted on the knee extensor, plantar flexor, and gluteus muscles. During the first 6 weeks, training sessions were carried out 3 times a week and during the last 6 weeks, once a week. Isokinetic torque of the knee extensors was determined at different eccentric and concentric angular velocities ranging from -120 to 360 degrees .s(-1). Scrummaging and full squat strength, vertical jump height and sprint-running times were also evaluated. After the first 6 weeks of EMS, only the squat strength was significantly improved (+8.3 +/- 6.5%; p < 0.01). After the 12th week, the -120 degrees .s(-1) maximal eccentric, 120 and 240 degrees .s(-1) maximal concentric torque (p < 0.05), squat strength (+15.0 +/- 8.0%; p < 0.001), squat jump (+10.0 +/- 9.5%; p < 0.01), and drop jump from a 40-cm height (+6.6 +/- 6.1%; p < 0.05) were significantly improved. No significant change was observed for the control group. A 12-week EMS training program demonstrated beneficial effects on muscle strength and power in elite rugby players on particular tests. However, rugby skills such as scrummaging and sprinting were not enhanced.  相似文献   

20.
The purpose of this study was to determine the effectiveness of white-box decision tree models (DTM) for predicting the rating of perceived exertion (RPE). The second aim was to examine the relationship between RPE and external measures of intensity in youth soccer training at the group and individual level. Training load data from 18 youth soccer players were collected during an in-season competition period. A total of 804 training observations were undertaken, with a total of 43 ± 17 sessions per player (range 12–76). External measures of intensity were determined using a 10 Hz GPS and included total distance (TD, m/min), high-speed running distance (HSR, m/min), PlayerLoad (PL, n/min), impacts (n/min), distance in acceleration/deceleration (TD ACC/TD DEC, m/min) and the number of accelerations/decelerations (ACC/DEC, n/min). Data were analysed with decision tree models. Global and individualized models were constructed. Aggregated importance revealed HSR as the strongest predictor of RPE with relative importance of 0.61. HSR was the most important factor in predicting RPE for half of the players. The prediction error (root mean square error [RMSE] 0.755 ± 0.014) for the individualized models was lower compared to the population model (RMSE 1.621 ± 0.001). The findings demonstrate that individual models should be used for the assessment of players’ response to external load. Furthermore, the study demonstrates that DTM provide straightforward interpretation, with the possibility of visualization. This method can be used to prescribe daily training loads on the basis of predicted, desired player responses (exertion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号