首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(6):982-984
Like other organisms, plants rely on autophagy to recycle intracellular components needed for development, new growth and survival during nutrient stress. This ‘self eating’ is a catabolic process by which unwanted cytoplasmic materials and dysfunctional organelles are sequestered into vesicles and subsequently delivered to the vacuole for breakdown. The process is tightly regulated by the autophagy-related 1(ATG1)-ATG13 kinase complex which is controlled by multiple nutrient-responsive upstream regulators that integrate nutrient demand with availability. To further appreciate how autophagy is controlled in plants, we recently examined the functions of the ATG1-ATG13 complex in Arabidopsis thaliana. Our data revealed a dual role for the ATG1-ATG13 complex, first as a regulator of plant autophagy, and second as a substrate of this recycling process.  相似文献   

2.
3.
《Cell》2012,149(5):955-957
  相似文献   

4.
陈尚武 《生命的化学》2001,21(5):379-381
免疫和造血细胞的生长、分化及其他功能受到细胞因子网络的控制。由于大多数细胞因子受体缺乏胞浆段的激酶结构域 ,配体依赖的酪氨酸磷酸化由非受体酪氨酸激酶来中介。细胞因子刺激后早期激活的主要酪氨酸激酶是Januskinase(JAK)家族。事实上 ,JAK STAT途径是许多细胞因子激活基因转录最重要机制之一。当细胞因子结合到细胞表面的受体 ,引起受体的二聚化 ,进而活化JAK激酶 ,活化的JAK激酶反过来磷酸化细胞因子受体 ,导致其他的信号分子如STAT家族蛋白的介入并被激活 ,活化的STAT转入细胞核 ,激活大量细…  相似文献   

5.
6.
7.
CFTR, A Regulator of Channels   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
铁吸收调节蛋白(ferric uptake regulator,Fur)是多种微生物菌体内调控铁的一种蛋白质,它编码一个铁感应器以及转录调控因子,可以根据细胞内Fe2+的浓度,氧化应激以及毒性来调控铁载体合成相关基因的表达。研究发现Fur不仅调节与铁相关的物质代谢,也与其他的物质代谢有着紧密的联系。综合国内外研究进展介绍了Fur的结构与功能,阐述了Fur在生物冶金、农业、医药等方面的研究进展,并对其应用前景以及研究趋势进行了展望。  相似文献   

10.
The cystic fibrosis transmembrane conductance regulator (CFTR) attenuates sphingosine-1-phosphate (S1P) signaling in resistance arteries and has emerged as a prominent regulator of myogenic vasoconstriction. This investigation demonstrates that S1P inhibits CFTR activity via adenosine monophosphate-activated kinase (AMPK), establishing a potential feedback link. In Baby Hamster Kidney (BHK) cells expressing wild-type human CFTR, S1P (1μmol/L) attenuates forskolin-stimulated, CFTR-dependent iodide efflux. S1P’s inhibitory effect is rapid (within 30 seconds), transient and correlates with CFTR serine residue 737 (S737) phosphorylation. Both S1P receptor antagonism (4μmol/L VPC 23019) and AMPK inhibition (80μmol/L Compound C or AMPK siRNA) attenuate S1P-stimluated (i) AMPK phosphorylation, (ii) CFTR S737 phosphorylation and (iii) CFTR activity inhibition. In BHK cells expressing the ΔF508 CFTR mutant (CFTRΔF508), the most common mutation causing cystic fibrosis, both S1P receptor antagonism and AMPK inhibition enhance CFTR activity, without instigating discernable correction. In summary, we demonstrate that S1P/AMPK signaling transiently attenuates CFTR activity. Since our previous work positions CFTR as a negative S1P signaling regulator, this signaling link may positively reinforce S1P signals. This discovery has clinical ramifications for the treatment of disease states associated with enhanced S1P signaling and/or deficient CFTR activity (e.g. cystic fibrosis, heart failure). S1P receptor/AMPK inhibition could synergistically enhance the efficacy of therapeutic strategies aiming to correct aberrant CFTR trafficking.  相似文献   

11.
12.
13.
Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses.  相似文献   

14.
《Journal of molecular biology》2019,431(5):1016-1024
To address the mechanism of thermosensing and its implications for molecular engineering, we previously deconstructed the functional components of the bacterial thermosensor DesK, a histidine kinase with a five-span transmembrane domain that detects temperature changes. The system was first simplified by building a sensor that consists of a single chimerical transmembrane segment that retained full sensing capacity. Genetic and biophysical analysis of this minimal sensor enabled the identification of three modular components named determinants of thermodetection (DOTs). Here we combine and tune the DOTs to determine their contribution to activity. A transmembrane zipper represents the master DOT that drives a reversible and activating dimerization through the formation of hydrogen bonds. Our findings provide the mechanism and insights to construct a synthetic transmembrane helix based on a poly-valine scaffold that harbors the DOTs and regulates the activity. The construct constitutes a modular switch that may be exploited in biotechnology and genetic circuitry.  相似文献   

15.
The effects of thermophilic methane fermentation products on alfalfa (Medicago sativa L.) growth, nitrogen-fixing activity, and seed production were studied in pot and field experiments. Plant treatment with the preparation at the stages of stooling and flower bud formation resulted in an increase in the root nodule weight and their nitrogen-fixing activity, the accumulation of cytokinins (zeatin and zeatin riboside), and an increase in the green mass yield and protein content, especially at a low (0.25 of the full rate) mineral nitrogen rate. Crop seed production was considerably improved during the first (pot experiments) and second (field experiments) growing seasons. The conclusion was drawn that the causes for improved alfalfa seed production were the effects of group B vitamins, phytohormones, their interaction, and the switching of metabolic pathways toward cytokinin synthesis.  相似文献   

16.
17.
NADP(H) is an important cofactor that controls many fundamental cellular processes. We have determined the crystal structure of HSCARG, a novel NADPH sensor, and found that it forms an asymmetrical dimer with only one subunit occupied by an NADPH molecule, and the two subunits have dramatically different conformations. To study the role of NADPH in affecting the structure and function of HSCARG, here, we constructed a series of HSCARG mutants to abolish NADPH binding ability. Protein structures of two mutants, R37A and Y81A, were solved by X-ray crystallography. The dimerization of wild-type and mutant HSCARG was studied by dynamic light scattering. Differences between the function of wild-type and mutant HSCARG were also compared. Our results show that binding of NADPH is necessary for HSCARG to form a stable asymmetric dimer. The conformation of the monomeric mutants was similar to that of NADPH-bound Molecule I in wild-type HSCARG, although some conformational changes were found in the NADPH binding site. Furthermore, we also noticed that abolition of NADPH binding ability changes the distribution of HSCARG in the cell and that these mutants without NADPH are more strongly associated with argininosuccinate synthetase as compared with wild-type HSCARG. These data suggest that NADPH functions as an allosteric regulator of the structure and function of HSCARG. In response to the changes in the NADPH/NADP+ ratio within cells, HSCARG, as a redox sensor, associates and dissociates with NADPH to form a new dynamic equilibrium. This equilibrium, in turn, will tip the dimerization balance of the protein molecule and consequently controls the regulatory function of HSCARG.  相似文献   

18.
Pacemaker cells play a fundamental role in generating or regulating many essential biological rhythms. Spontaneous pacemaker activity is dependent on the function of an array of ion channels expressed in these cells. Recent characterization of a Na(+) leak channel (NALCN) has linked to its role in conducting the background Na(+) current that depolarizes resting membrane properties of pacemaker neurons. NALCN, along with Unc79 and Unc80, forms a protein complex that is involved in regulating intrinsic membrane and synaptic activities. In this review, we will discuss the current understanding of NALCN channel physiology and its role in regulating cell excitability and pacemaker activity.  相似文献   

19.
20.
TDZ:一种有效的植物生长调节剂   总被引:1,自引:0,他引:1  
人工合成的苯基脲衍生物TDZ(N-苯基-N′-1,2,3-噻二唑-5-脲)是已被广泛用于植 物组织培养形态发生的高效生物调节剂。它能诱导外植体从愈伤组织形成到体细胞胚胎发生 的一系列不同反应,具有生长素和细胞分裂素双重作用的特殊功能。近年来通过研究TDZ启 动的形态发生事件,人们正逐渐揭示出其内在作用机理。许多研究报告指出TDZ通过调节内 源植物生长激素起作用,或者是诱导逆境产生起间接作用。它还能调节细胞膜结构、能量水 平、营养吸收和同化作用。本文将探讨TDZ几种可能的作用机理,并概述近年来有关TDZ诱导的植物离体形态发生效应研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号