首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the influence of the subjects' level of maximal dynamic strength and training background on postactivation potentiation (PAP). A group of 23 subjects, composed of power track-and-field athletes (PT = 8), bodybuilders (BB = 7), and physically active subjects (PA = 8), participated in the study. Maximal dynamic strength (1 repetition maximum test) was assessed in the leg press exercise for subjects' characterization. Their countermovement vertical jump (CMJ) performance was assessed before and after 2 different conditioning activity (CA) protocols (1 or 3 maximum voluntary isometric contractions [MVICs] of 5-second duration in the leg press exercise) or after control (no CA), performed on separate days. No significant differences among groups were found for CMJ height or take-off velocity after any of the CA protocols (p ≤ 0.05). However, individual analysis showed that some subjects increased performance in response to the CA, despite their previous training history. We concluded that subjects' level of maximal dynamic strength and training background have no influence on PAP manifestation. Our data suggest that coaches should individually identify the athletes that are PAP responders before introducing MVICs as part of their warm-up routines.  相似文献   

2.
The aim of the present study was to compare the effects of different warm-up interventions on jump, sprint and agility performance in collegiate soccer players. Twenty-one healthy male college soccer players (age: 20.14 ± 1.65 years; body height: 179.9 ± 8.34 cm; body mass: 74.4 ± 13.0 kg; % body fat: 9.45 ± 4.8) participated in the study. Subjects underwent four different randomized warm-up protocols separated by at least 48 hours. The warm-up schemes were: 1. no conditioning contraction protocol (NCC); 2. dynamic stretching (DS); 3. prolonged intermittent low-intensity isometric exercise (ST); and, 4. ST with an additional external load equal to 30% of body weight (ST + 30% BW). All interventions were preceded by a general warm-up. Results from one-way repeated measures ANOVA demonstrated a significant difference in countermovement jump (CMJ) at F(3,60) = 10.2, ηρ2 = 0.337, p < 0.01. Post hoc analysis revealed a significant difference in CMJ performance in DS when compared to NCC and ST + 30% BW. No significant difference in CMJ was observed between DS and ST. CMJ scores in NCC, ST, and ST + 30% BW were non-significant. There was a significant difference in speed; F(3, 60) = 6.61, ηρ2 = 0.248, p < 0.01. Post hoc analysis revealed significantly better time in DS than NCC and ST. However, no difference in speed was observed between DS and ST + 30% BW. Similarly, speed was similar in NCC, ST and ST + 30% BW. A significant difference in agility performance was also observed; F(3, 60) = 24.1, ηρ2= 0.546, p < 0.01. Post hoc analysis revealed significantly greater performance gains in DS than NCC. No significant difference in agility was observed in DS, ST and ST + 30% BW. In conclusion, a prolonged intermittent low-intensity isometric protocol using bodyweight only showed similar benefits with dynamic stretching in countermovement jump performance. When the same isometric condition with additional load equal to 30% of bodyweight was applied, effects in speed and agility were similar to dynamic stretching.  相似文献   

3.
The current literature recommends dynamic rather than static stretching for the athletic warm-up. Dynamic stretching and various conditioning stimuli are used to induce potentiation in subsequent athletic performance. However, it is unknown as to which type of activity in conjunction with dynamic stretching within a warm-up provides the optimal potentiation of vertical jump performance. It was the objective of the study to examine the possible potentiating effect of various types of conditioning stimuli with dynamic stretching. Twenty athletes participated in 6 protocols. All the experimental protocols included 10 minutes of dynamic stretching. After the dynamic stretching, the subjects performed a (a) concentric (DS/CON): 3 sets of 3 repetition maximum deadlift exercise; (b) isometric (DS/ISOM): 3 sets of 3-second maximum voluntary contraction back squats; (c) plyometric (DS/PLYO): 3 sets of 3 tuck jumps; (d) eccentric (DS/ECC): 3 modified drop jumps; (e) dynamic stretching only (DS), and (f) control protocol (CON). Before the intervention and at recovery periods of 15 seconds, 4, 8, 12, 16, and 20 minutes, the participants performed 1-2 maximal countermovement jumps. The DS and DS/CON protocols generally had a 95-99% likelihood of exceeding the smallest worthwhile change for vertical jump height, peak power, velocity and force. However, the addition of the deadlift to the DS did not augment the potentiating effect. Time-to-peak potentiation was variable between individuals but was most consistent between 3 and 5 minutes. Thus, the volume and the intensity associated with 10 minutes of dynamic stretching were sufficient to provide the potentiation of vertical jump characteristics. Additional conditioning activities may promote fatigue processes, which do not permit further potentiation.  相似文献   

4.
The aim of this study was to conduct a comprehensive examination of caffeine’s effects on countermovement jump (CMJ) performance. In this randomized, double-blind, crossover study, twenty-two resistance-trained men (age: 28 ± 5 years; height: 183 ± 5 cm; weight: 79 ± 10 kg; habitual caffeine intake: 127 ± 102 mg/day) performed the CMJ test on two occasions, following the ingestion of capsule containing 3 mg/kg of caffeine or placebo (3 mg/kg of dextrose). Fifteen outcomes derived from the force plate during the CMJ test were analyzed. As compared to placebo, there was a significant ergogenic effect of caffeine for peak force, force at eccentric to concentric action transition, time to peak force, peak power, maximum rate of power development, peak velocity, power at peak force, velocity at peak power, velocity at peak force, and vertical jump height. Effect sizes ranged from 0.11 to 0.38, p-values ranged from 0.048 to 0.002. There were no significant differences between caffeine and placebo for mean force, mean power, time to peak power, impulse at 300 ms, and force at peak power. This study shows that caffeine ingestion impacts a wide array of outcomes derived from the force plate during the CMJ test, not only jump height. From a practical perspective, the findings suggest that: (1) individuals interested in acute increases in CMJ performance may consider caffeine supplementation; and, (2) caffeine intake should be standardized before CMJ testing.  相似文献   

5.
This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p < 0.05). On the other hand, no significant difference in different percentages of body weight states was observed (p > 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p < 0.05). The dynamic resistance warm-up method was found to cause changes in the kinematics of jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely.  相似文献   

6.
The purpose of this study was to compare the acute effects on youth fitness of 3 different warm-up protocols utilizing static stretching or dynamic exercise performance. Sixty children (mean age 11.3 +/- 0.7 years) performed 3 different warm-up routines in random order on nonconsecutive days. The warm-up protocols consisted of 5 minutes of walking and 5 minutes of static stretching (SS), 10 minutes of dynamic exercise (DY), or 10 minutes of dynamic exercise plus 3 drop jumps from 15-cm boxes (DYJ). Following each warm-up session, subjects were tested on the vertical jump, long jump, shuttle run, and v-sit flexibility. Analysis of the data revealed that vertical-jump and shuttle-run performance declined significantly following SS as compared to DY and DYJ, and long-jump performance was significantly reduced following SS as compared to DYJ (p < 0.05). There were no significant differences in flexibility following the 3 warm-up treatments. The results of this study suggest that it may be desirable for children to perform moderate- to high-intensity dynamic exercises prior to the performance of activities that require a high power output.  相似文献   

7.
The present study examined the short-term effects of loaded half squats (HSs) and loaded jump squats (JSs) with low and moderate loads on the squat jump (SJ) and the countermovement jump (CMJ) performance using a contrast training approach. Ten men (mean +/- SD age, 23 +/- 1.8 years) performed the HS and JS exercises twice with loads of 30% of 1 repetition maximum (1RM) (HS30% and JS30%, respectively) and 60% of 1RM (HS60% and JS60%, respectively). On each occasion, 3 sets of 5 repetitions with 3 minutes of rest were performed as fast as possible. Vertical jump performance was measured before exercise, 1 minute after each set, and at the fifth and 10th minutes of recovery. The CMJ increased significantly after the first and second set (3.9%; p < 0.05) compared with preexercise values following the JS30% protocol and 3.3% after the second and third sets of the JS60% protocol. Following the HS60% protocol, CMJ increased after the first and the second sets (3.6%; p < 0.05) compared with preexercise values, whereas SQ increased only after the first set (4.9%; p < 0.05) in this condition. These data show that contrast loading with the use of low and moderate loads can cause a short-term increase in CMJ performance. The applied loads do not seem to present different short-term effects after loaded JSs. When the classic form of dynamic HS exercise is performed, however, at least a moderate load (60% of 1RM) needs to be applied.  相似文献   

8.
The purpose of this study was to investigate the effects of a single bout of whole-body vibration on isometric squat (IS) and countermovement jump (CMJ) performance. Nine moderately resistance-trained men were tested for peak force (PF) during the IS and jump height (JH) and peak power (PP) during the CMJ. Average integrated electromyography (IEMG) was measured from the vastus medialis, vastus lateralis, and biceps femoris muscles. Subjects performed the 2 treatment conditions, vibration or sham, in a randomized order. Subjects were tested for baseline performance variables in both the IS and CMJ, and were exposed to either a 30-second bout of whole-body vibration or sham intervention. Subjects were tested immediately following the vibration or sham treatment, as well as 5, 15, and 30 minutes posttreatment. Whole-body vibration resulted in a significantly higher (p < or = 0.05) JH during the CMJ immediately following vibration, as compared with the sham condition. No significant differences were observed in CMJ PP; PF during IS or IEMG of the vastus medialis, vastus lateralis, or biceps femoris during the CMJ; or IS between vibration and sham treatments. Whole-body vibration may be a potential warm-up procedure for increasing vertical JH. Future research is warranted addressing the influence of various protocols of whole-body vibration (i.e., duration, amplitude, frequency) on athletic performance.  相似文献   

9.
This study examined the acute performance enhancing effects of a single light-load, high-velocity or heavy-load, low-velocity squat intervention set (SIS) on stimulating activity-dependent postactivation potentiation and thereby increasing vertical jumping performance. Jump performance was assessed using 4 dependent variables: net impulse, time of ground contact, and normalized peak and normalized minimum vertical ground reaction force. Resistance-trained subjects (n = 30) attended 3 independent sessions separated by 3 to 7 days. The first session served for familiarization and to determine each subject's 1 repetition maximum (1RM) in the squat. In the 2 testing sessions, subjects performed 2 countermovement jump (CMJ) sets, followed by a single SIS and then a final CMJ set. A CMJ set consisted of 3 maximal effort jumps. The testing sessions were identical except for SIS intensity, which was 40% of 1RM for 1 session and 80% of 1RM for the other. The order of the 2 testing sessions was counterbalanced within subjects. The 4 dependent variables were reduced for every jump. No significant changes were observed from pre- to post-testing in either SIS condition, nor were there any differences between the heavy and light SIS loading condition. Reasons for the lack of performance enhancement can be attributed to postactivation potentiation stimulated by the SIS being insufficient in magnitude or dissipating before post-testing. This may have been due to a submaximal workload of 50% during the SIS, insufficient movement pattern specificity between the squat exercise and a CMJ, or rest intervals of excess duration. A single SIS provides no benefit to a warm-up protocol under the current conditions.  相似文献   

10.
The purpose of this study was to investigate the acute effect of 3 warm-up protocols on peak power production during countermovement jump (CMJ) testing. The intention was to devise and compare practical protocols that could be applied as a warm-up immediately before competition matches or weight training sessions. A group of 22 elite Australian Rules Football players performed 3 different warm-up protocols over 3 testing sessions in a randomized order. The protocols included a series of low load exercises targeting the gluteal muscle group (GM-P), a whole-body vibration (WBV) protocol (WBV-P) wherein the subjects stood on a platform vibrating at 30 Hz for 45 seconds, and a no-warm-up condition (CON). The CMJ testing was performed within 5 minutes of each warm-up protocol on an unloaded Smith machine using a linear encoder to measure peak power output. Peak power production was significantly greater after the GM-P than after both the CON (p < 0.05) and WBV-P (p < 0.01). No significant differences in peak power production were detected between the WBV-P and CON. These results have demonstrated that a low load exercise protocol targeting the gluteal muscle group is effective at acutely enhancing peak power output in elite athletes. The mechanisms for the observed improvements are unclear and warrant further investigation. Coaches may consider incorporating low load exercises targeting the gluteal muscle group into the warm-up of athletes competing in sports requiring explosive power output of the lower limbs.  相似文献   

11.
This study quantified the performance recovery time requirements after training sessions using high-intensity soccer drills with and without the ball in National Collegiate Athletic Association Division I female soccer players. Recovery time periods (24, 48, 72 hours of rest) from high-intensity soccer training sessions using drills with and without the ball were evaluated. Markers of recovery were each individual's performance relative to baseline performance in countermovement jump (CMJ) height, 5 bound jumps for distance (5BT), 20-m sprint (20SP), session rating of perceived effort (S-RPE), and heart rate (HR). Repeated-measures analysis of variance revealed a significant difference in CMJ performance (p < 0.04) and S-RPE (p < 0.02) after 24 hours of rest but not at 48 or 72 hours compared to baseline. There were no significant differences in 20SP, 5BT, or HR after 24, 48, or 72-hour recovery (p > 0.05). Therefore, high-intensity training drills produced a sufficient conditioning stimulus with little chance of underrecovery for the performance measures we tested. Countermovement jump and S-RPE may be more sensitive performance recovery indicators.  相似文献   

12.
The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.  相似文献   

13.
This study was aimed to analyze the loss of muscle explosive force in the early phase of eccentric exercise-induced damage, and its possible relationships with muscle soreness and blood creatine kinase (CK) levels. Squat jump (SJ) and countermovement jump (CMJ) heights decreased in response to an eccentric exercise (120 eccentric actions of the knee extensors), with reductions that persisted at least for 24 h. The SJ/CMJ ratio was not significantly modified. Blood CK levels changed significantly over time and CK activity was significantly higher at 6 and at 24 h when compared to values obtained immediately after the eccentric exercise. Muscle soreness perceived at 6 h was slightly higher than that experienced just after finalizing the exercise and reached a clearly upper value at 24 h. A highly significant relationship between SJ and CMJ height loss was observed. CK activity at 24 h was significantly related to the SJ height loss at 6 h and to both the SJ height loss and the CMJ height loss immediately after the exercise. In summary, eccentric exercise induced a reduction in the explosive force generating capacity that affected in a similar way the pure concentric jump (SJ) and the jump eliciting the stretch-shortening cycle (CMJ). Results obtained suggest that CK activity is a better predictor of explosive force reduction than soreness, at least when values close to the peak are used.  相似文献   

14.
The aim of this study was to investigate the effects of postactivation potentiation (PAP) on swim start performance (time to 15 m) in a group of international sprint swimmers. Nine international sprint swimmers (7 men and 2 women) volunteered and gave informed consent for this study, which was approved by the university ethics committee. Initially, swimmers performed a countermovement jump (CMJ) on a portable force platform (FP) at baseline and at the following time points ~15 seconds, 4, 8, 12, and 16 minutes after a PAP stimulus (1 set of 3 repetitions at 87% 1 repetition maximum [RM]) to individually determine the recovery time required to observe enhanced muscle performance. On 2 additional days, swimmers performed a swim start to 15 m under 50-m freestyle race conditions, which was preceded by either their individualized race specific warm-up or a PAP stimulus (1 set of 3 repetitions at 87% 1RM). Both trials were recorded on 2 cameras operating at 50 Hz with camera 1 located at the start and camera 2 at the 15-m mark. Peak vertical force (PVF) and peak horizontal force (PHF) were measured during all swim starts from a portable FP placed on top of the swim block. A repeated measures analysis of variance revealed a significant time effect with regard to power output (PO) (F = 20.963, p < 0.01) and jump height (JH) (F = 14.634, p < 0.01) with a paired comparison indicating a significant increase in PO and JH after 8 minutes of recovery from the PAP stimulus. There was a significant increase in both PHF and PVF after the PAP stimulus compared to the swim-specific warm-up during the swim start (PHF 770 ± 228 vs. 814 ± 263 N, p = 0.018; PVF: 1,462 ± 280 vs. 1,518 ± 311 N, p = 0.038); however, time to 15 m was the same when both starts were compared (7.1 ± 0.8 vs. 7.1 ± 0.8 seconds, p = 0.447). The results from this study indicate that muscle performance during a CMJ is enhanced after a PAP stimulus providing adequate recovery (~8 minutes) is given between the 2 activities. In addition, this study demonstrated that swimmers performed equally well in terms of time to 15 m when a PAP stimulus was compared to their individualized race specific warm-up and indicates that PAP may be a useful addition to a warm-up protocol before races. However, more research is required to fully understand the role PAP plays in swim performance.  相似文献   

15.
Objective:The purpose of this study was to evaluate the effects of static stretching and the application of massage on flexibility and jump performance.Methods:Thirty-five athletes studying Physical Education at University (mean age 23.6±1.3 years, mean height 177.8±6.3 cm and mean weight 72.2±6.7 kg) performed one of three different warm-up protocols on non-consecutive days. Protocols included static stretching [SS], combined static stretching and massage [SSM], and neither stretching nor massage [CONT]. The athletes performed flexibility, countermovement jump (CMJ) and squat jump (SJ) tests.Results:SS and SSM protocols demonstrated 12% (p<0.05) and 16% (p<0.05) respectively greater flexibility than the CONT protocol. SJ and CMJ performances were significantly decreased 10.4% (p<0.05) and 5.5% (p<0.05) respectively after the SS protocol. There was no significant difference between SSM and CONT protocol in terms of SJ and CMJ performance.Conclusion:This research indicates that whereas static stretching increases the flexibility it decreases the jumping performance of the athletes. On the other hand, the application of massage immediately following static stretching increases flexibility but does not reduce jumping performance. Considering the known negative acute effects of static stretching on performance, the application of massage is thought to be beneficial in alleviating such effects.  相似文献   

16.
Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.  相似文献   

17.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

18.
To date, there is a lack of information about the optimal conditions of the warm-up to lead to a better performance in elite tennis players. The aim of this study was to compare the effects of two different warm-up protocols (dynamic vs. self-myofascial release with foam rolling) on neuromuscular variables associated with physical determinants of tennis performance. Using a crossover randomised experimental design, eleven professional men tennis players (20.6 ± 3.5 years) performed either a dynamic warm-up (DWU) or a self-myofascial release with foam rolling (SMFR) protocol. DWU consisted of 8 min of dynamic exercises at increasing intensity and SMFR consisted of 8 min of rolling on each lower extremity unilaterally. Just before (baseline) and after completing warm-up protocols, players performed a countermovement jump (CMJ), the 5-0-5 agility test, a 10-m sprint test and the Straight Leg Raise and Thomas tests to assess range of motion. Compared to baseline, the DWU was more effective to reduce the time in the 5-0-5 test than SMFR (-2.23 vs. 0.44%, respectively, p = 0.042, ηp2 = 0.19). However, both warm-up protocols similarly affected CMJ (2.32 vs. 0.61%, p = 0.373, ηp2 = 0.04) and 10-m sprint time changes (-1.26 vs. 1.03%, p = 0.124, ηp2 = 0.11). Changes in range of motion tests were also similar with both protocols (p = 0.448–1.000, ηp2 = 0.00–0.02). Overall, both DWU and SMFR were effective to prepare well-trained tennis players for highly demanding neuromuscular actions. However, DWU offered a better preparation for performing change of direction and sprint actions, and hence, in high-performance tennis players, the warm-up should include dynamic exercises.  相似文献   

19.
The purpose of the study was to provide practical suggestions on the effect of stretching on the maximal anaerobic power preceded by active or passive warm-up. To this aim, 15 relatively fit male subjects (age 23 +/- 0.2 years, height 177 +/- 2 cm, body mass 74 +/- 2 kg; [mean +/- SE]) randomly performed a series of squat jumps (SJ) and countermovement jumps (CMJ). Jumps were preceded alternatively by: i) passive stretching of lower limbs muscles; ii) active warm-up (AWU); iii) passive warm up (PWU); and iv) the joining of stretching with either active warm-up (AWU+S) or passive warm-up (PWU+S). In control conditions (C) only jumps were required. For the 2 jumps the flight time (Ft), the peak force (Pf), and the maximal power (Wpmax) were calculated. It resulted that Ft, Pf, and Wmax values were significantly higher: i) after AWU than after PWU and PWU+S in CMJ; and ii) in AWU as compared to those of other protocols of SJ. Stretching did not negatively affect the maximal anaerobic power, per se, but seems to inhibit the effect of AWU. The results suggested that AWU seemed to increase vertical jump performance when compared to PWU, presumably due to an increase in metabolic activity as a consequence of AWU, which did not occur in PWU, despite the same skin temperature. Passive stretching alone seemed not to negatively influence vertical jump performance, whereas, if added after AWU, could reduce the power output.  相似文献   

20.
The purpose of this study was to evaluate the immediate influence of eccentric muscle action on vertical jump performance in athletes performing sports with a high demand of explosive force development. In this randomized, controlled crossover trial, 13 Swiss elite athletes (national team members in ski jump, ski alpine, snowboard freestyle and alpine, ski freestyle, and gymnastics) with a mean age of 22 years (range 20-28) were randomized into 2 groups. After a semistandardized warm-up, group 1 did 5 jumps from a height of 60 cm, landing with active stabilization in 90 degrees knee flexion. One minute after these modified drop jumps, they performed 3 single squat jumps (SJ) and 3 single countermovement jumps (CMJ) on a force platform. The athletes repeated the procedure after 1 hour without the modified drop jumps. In a crossover manner, group 2 did the first warm-up without and the second warm-up with the modified drop jumps. Differences of the performance (jump height and maximal power) between the different warm-ups were the main outcomes. The mean absolute power and absolute height (without drop jumps) were CMJ 54.9 W.kg(-1) (SD = 4.1), SJ 55.0 W.kg(-1) (SD = 5.1), CMJ 44.1 cm (SD = 4.1), and SJ 40.8 cm (SD = 4.1). A consistent tendency for improvement with added drop jumps to the warm-up routine was observed compared with warm-up without drop jumps: maximal power CMJ +1.02 W.kg(-1) (95% confidence interval [CI] = +0.03 to +2.38), p = 0.045; maximal power SJ +0.8 W.kg(-1) (95% CI = -0.34 to +2.02), p = 0.148; jump height CMJ +0.48 cm (95% CI = -0.26 to +1.2), p = 0.182; SJ +0.73 cm (95% CI = -0.36 to +1.18), p = 0.169. Athletes could add modified drop jumps to the warm-up before competitions to improve explosive force development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号