首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used a set of 16 SSR markers to check the identity of pure-species and hybrid clones in Vietnam’s Acacia auriculiformis, Acacia mangium, and acacia hybrid (A. mangium × A. auriculiformis) breeding programs. The statistics package HIest, applied to a large synthesized population, enabled accurate allocation of genotypes to the two pure species, F1 and F2 inter-specific hybrids and backcrosses, based on estimates of hybridity and heterozygosity. The hybridity status of putatively pure A. mangium and A. auriculiformis clones in adjacent clonal seed orchards was checked. Four out of 100 clones selected as A. mangium were found to be backcrosses (A. mangium × F1 inter-specific hybrid) while out of 96 clones selected as A. auriculiformis, two were F1 hybrids and two were backcrosses (A. auriculiformis × F1 hybrid). The markers were then applied to check the hybridity status of 160 putative acacia F1 hybrid genotypes that had been selected on morphological criteria from open-pollinated progenies collected from A. auriculiformis and A. mangium parents. Many selections based on morphology were found to be mistaken. Only thirteen of 63 clones originating from A. auriculiformis mothers were F1 hybrids, four were backcrosses, and the remaining 46 were pure A. auriculiformis. Fewer mistakes were evident for clones selected from A. mangium mothers, with 82 out of 89 clones confirmed as F1 hybrids, three as backcrosses, and four as pure A. mangium. The occurrence of F1 hybrids and backcrosses in pure-species seed orchards and their progeny shows that inter-species contamination is an issue requiring management in both pure-species and in hybrid breeding of these species in Vietnam. Examination of genetic distances among verified clones showed patterns of relatedness that were consistent with pedigree records. Implications for resource management as well as for breeding and clonal selection strategies are considered.  相似文献   

2.
Root-knot nematodes (RKNs) can severely damage crops, including peppers, worldwide. The application of resistance genes identified in the Capsicum annuum genome may represent a safe and economically relevant strategy for controlling RKNs. Among the Me genes (Me1, Me3, Me7, and N) that have been mapped to a cluster on chromosome P9, Me1 confers a heat-stable and broad-spectrum resistance that is difficult for virulent RKNs to overcome. In this study, we developed several closely linked kompetitive allele-specific PCR (KASPar) markers, simple sequence repeat (SSR) markers, sequence characterized amplified region (SCAR) markers, and high-resolution melting (HRM) markers for the mapping of RKN-resistance genes. Analyses of 948 individuals (BC1 and F2 progenies) revealed that Me1 was located between SCAR marker 16880-1-V2 and HRM marker 16830-H-V2, with 13 and 0 recombination events with Me1, respectively. These markers were localized to a 132-kb interval, which included six genes. The development of several PCR-based markers closely linked to Me1 will be useful for the marker-assisted selection of RKN resistance in pepper cultivars. Among these markers, 16830-H-V2 and 16830-CAPS are present in the CA09g16830 gene, which is predicted to be a putative late blight resistance protein homolog R1A-3 gene. This gene appears to be a suitable Me1 candidate gene.  相似文献   

3.
Species in the fungal family Botryosphaeriaceae are significant pathogens of peach. The climatic conditions in the Southeastern USA are conducive to the development of peach fungal gummosis (PFG) with an estimated yield reduction of up to 40% in severe cases. Genotypes with resistance to this PFG were identified in interspecific crosses and segregating backcross populations generated using Kansu peach (Prunus kansuensis Rehder), almond [Prunus dulcis (Mill.) D.A. Webb], and peach [Prunus persica (L.) Batsch]. Hybrids were evaluated for four consecutive years in field conditions. Data generated was validated in different environments using clonal replicates of the hybrids. The F1 and BC1F1 segregation population data suggest a dominant allele for PFG resistance originating from almond. Segregation and mapping analysis located the PFG resistance locus on a chimeric linkage groups 6–8 near the leaf color locus. The molecular markers identified will facilitate marker-assisted selection (MAS) and introgression of this resistance trait into commercial peach germplasm.  相似文献   

4.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

5.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

6.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

7.

Background

Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed.

Results

By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance.

Conclusions

Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.
  相似文献   

8.
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05–1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.  相似文献   

9.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

10.
The rock bass (Ambloplites rupestris) is a popular sport-fish native to the Mississippi and Great Lakes basins of North America. The species has been widely introduced outside its native range, including into Atlantic-slope streams of Virginia where it may hybridize with an imperiled, similar-looking congener, the Roanoke bass (Ambloplites cavifrons). In this study, we identified and evaluated novel molecular markers to facilitate identification of these species and study the extent of hybridization. Using molecular libraries developed from A. rupestris, we identified a suite of candidate nuclear microsatellite loci, synthesized primer sets, and tested these markers for amplification and polymorphism in populations of both species. We then calculated standard diversity statistics within and differentiation statistics between species, the latter providing an indication of marker power for distinguishing the species and their hybrids. Additionally, we evaluated our efficiency for identifying hybrids by classifying simulated genotypes of known ancestry. Eleven loci were polymorphic (2–22 alleles per locus) and reliably amplified in both species. Multilocus genetic differentiation between A. cavifrons and A. rupestris was quite high (F ST  = 0.66; D LR  = 19.3), indicating the high statistical power of this marker set for species and hybrid identification. Analyses of simulated data suggested these markers reliably distinguish between hybrids and non-hybrids, as well as between F1 hybrids and backcrossed individuals. This panel of 11 loci should prove useful for understanding patterns of hybridization between A. rupestris and A. cavifrons. As the first microsatellite markers developed for Ambloplites, these markers also should prove broadly useful for population genetic studies of this genus.  相似文献   

11.
The elite Indian rice hybrid, DRRH3 is highly susceptible to two major diseases, bacterial blight (BB) and blast, which limit its productivity significantly. In the present study, we have introgressed two major genes, viz., Xa21 and Pi54 conferring resistance against BB and blast, respectively into RPHR-1005, the male parent of DRRH3 through marker-assisted backcross breeding (MABB) and analyzed the backcross derived plants for their resistance against BB and blast. RPBio Patho-2 was used as a donor for both the resistance genes. Gene-specific markers were used for the foreground selection of Xa21 and Pi54 at each stage of backcrossing and markers specific for the major fertility restorer genes, Rf3 and Rf4 were used only at BC1F1 generation for foreground selection. Background selection was done using 62 polymorphic SSR markers and marker-assisted backcrossing was continued till BC3 generation. At BC3F4, through intensive phenotype-based selections 15 promising lines (ABLs) possessing high level of resistance against BB and blast, high yield, fine-grain type, complete fertility restoration along with better panicle exsertion and taller plant type as compared to RPHR-1005 were identified and test crossed with APMS 6 A, the female parent of DRRH3. The newly derived hybrids (i.e. improved versions of DRRH3) were observed to possess high level of resistance against BB and blast along with medium-slender grain type and yield level better than or equivalent to that of DRRH3. Our study exemplifies the utility of MABB for targeted improvement of multiple traits in hybrid rice.  相似文献   

12.

Key message

Allocation of the chromosome 2D of Ae. tauschii in triticale background resulted in changes of its organization, what is related to varied expression of genes determining agronomically important traits.

Abstract

Monosomic alien addition lines (MAALs) are crucial for transfer of genes from wild relatives into cultivated varieties. This kind of genetic stocks is used for physical mapping of specific chromosomes and analyzing alien genes expression. The main aim of our study is to improve hexaploid triticale by transferring D-genome chromatin from Aegilops tauschii × Secale cereale (2n = 4x = 28, DDRR). In this paper, we demonstrate the molecular cytogenetics analysis and SSR markers screening combined with phenotype analysis and evaluation of powdery mildew infection of triticale monosomic addition lines carrying chromosome 2D of Ae. tauschii. We confirmed the inheritance of chromosome 2D from the BC2F4 to the BC2F6 generation of triticale hybrids. Moreover, we unveiled a high variable region on the short arm of chromosome 2D, where chromosome rearrangements were mapped. These events had direct influence on plant height of hybrids what might be connected with changes at Rht8 loci. We obtained 20 semi-dwarf plants of BC2F6 generation carrying 2D chromosome with the powdery mildew resistance, without changes in spike morphology, which can be used in the triticale breeding programs.
  相似文献   

13.
Bruguiera hainesii (Rhizophoraceae) is one of the two Critically Endangered mangrove species listed in the IUCN Red List of Threatened Species. Although the species is vulnerable to extinction, its genetic diversity and the evolutionary relationships with other Bruguiera species are not well understood. Also, intermediate morphological characters imply that the species might be of hybrid origin. To clarify the genetic relationship between B. hainesii and other Bruguiera species, we conducted molecular analyses including all six Bruguiera species using DNA sequences of two nuclear genes (CesA and UNK) and three chloroplast regions (intergenic spacer regions of trnL-trnF, trnS-trnG and atpB-rbcL). For nuclear DNA markers, all nine B. hainesii samples from five populations were heterozygous at both loci, with one allele was shared with B. cylindrica, and the other with B. gymnorhiza. For chloroplast DNA markers, the two haplotypes found in B. hainesii were shared only by B. cylindrica. These results suggested that B. hainesii is a hybrid between B. cylindrica as the maternal parent and B. gymnorhiza as the paternal one. Furthermore, chloroplast DNA haplotypes found in B. hainesii suggest that hybridization has occurred independently in regions where the distribution ranges of the parental species meet. As the IUCN Red List of Threatened Species currently excludes hybrids (except for apomictic plant hybrids), the conservation status of B. hainesii should be reconsidered.  相似文献   

14.
15.
Aegilops speltoides is an important genetic resource for wheat improvement and has high levels of heat tolerance. A heat-tolerant accession of Ae. speltoides pau3809 was crossed with Triticum durum cv. PDW274, and BC2F4-6 backcross introgression lines (BILs) were developed, phenotyped for important physiological traits, genotyped using SSR markers and used for mapping the QTL governing heat tolerance component traits. A set of 90 BILs was selected from preliminary evaluation of a broader set of 262 BILs under heat stress. Phenotyping was conducted for physiological traits such as cell membrane thermostability, chlorophyll content, acquired thermotolerance, canopy temperature and stay green. Much variation for these traits was observed in random as well as selected sets of BILs, and comparison of the BILs with the recurrent parent showed improvement for these traits under normal as well as heat stress conditions, indicating that introgressions from Ae. speltoides might have led to the improvement in the heat tolerance potential of the BILs. Introgression profiling of the 90 BILs using SSR markers identified Ae. speltoides introgression on all the 14 chromosomes with introgressions observed on A as well as B genome chromosomes. QTL mapping identified loci for various heat tolerance component traits on chromosomes 2B, 3A, 3B, 5A, 5B and 7A at significant LOD scores and with phenotypic contributions varying from 11.1 to 28.7 % for different traits. The heat-tolerant BILs and QTL reported in the present study form a potential resource that can be used for wheat germplasm enhancement for heat stress tolerance.  相似文献   

16.
Vitamin A deficiency is a widely prevalent health disorder among millions of people worldwide. Introgression of crtRB1 and lcyE favourable alleles that enhance concentration of provitamin A in maize endosperm have been employed in maize biofortification programmes. To make marker-assisted selection (MAS) more effective, we have developed rapid and convenient multiplex-polymerase chain reaction (PCR) assay to simultaneously discover the allelic combinations among the segregants. Validation of the multiplex assay was done in two backcross-derived populations developed using elite inbreds viz., HKI193-1 and HKI193-2 carrying unfavourable alleles of crtRB1 (296 bp) and lcyE (300 bp) and HarvestPlus inbreds viz., HP704-22 and HP704-23 possessing favourable alleles of crtRB1 (543 bp) and lcyE (650 bp). We also standardized the uniplex-PCR assays for both the genes that gave robust and reproducible results in sub-tropical populations. Gel profiles of BC1F1, BC2F1 and BC2F2 revealed that these assays identified the backcross progenies homo-or hetero-zygous for the favourable- or unfavourable-alleles. Multiplex-PCR assay also precisely confirmed the results of individual uniplex assays in different backcross generations. Cost and time analyses showed that multiplex-PCR assay has potential to save 41% of cost, and 50% of time compared to two uniplex assays in a MAS programme. It has also saved 50% of the manpower. The multiplex assay possesses significant advantage over uniplex assays and enhances the efficiency of selection. This is the first report of development and validation of multiplex-PCR assay of crtRB1 and lcyE for utilization in maize biofortification programme.  相似文献   

17.
Wheat stripe rust is a destructive disease that affects most wheat-growing areas worldwide. Resistance genes from related species and genera add to the genetic diversity available to wheat breeding programs. The stripe rust-resistant introgression line H9020-17-25-6-4 was developed from a cross of resistant Psathyrostachys huashanica with the susceptible wheat cultivar 7182. H9020-17-25-6-4 is resistant to all existing Chinese stripe rust races, including the three most widely virulent races, CYR32, CYR33, and V26. We attempted to characterize this new line by genomic in situ hybridization (GISH) and genetic analysis. GISH using P. huashanica genomic DNA as a probe indicated that the translocated segment was too small to be detected. Genetic analysis involving F1, F2, and F2:3 materials derived from a cross of Mingxian 169 and H9020-17-25-6-4 indicated that a single dominant gene from H9020-17-25-6-4, temporarily designated YrHu, conferred resistance to CYR29 and CYR33. A genetic map consisting of four simple sequence repeat, two sequence-tagged site (STS), and two sequence-related amplified polymorphism markers was constructed. YrHu was located on the short arm of chromosome 3A and was about 0.7 and 1.5 cM proximal to EST-STS markers BG604577 and BE489244, respectively. Both the gene and the closely linked markers could be used in marker-assisted selection.  相似文献   

18.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

19.
Wild relatives of Brassica are a rich reservoir of genes that are invaluable for the improvement of cultivated species. Sinapis alba is a close relative of crop Brassicas that possesses several desirable traits such as tolerance to Alternaria black spot disease, heat stress, insect pests and nematodes. This study is aimed at developing and characterizing hybrids between Brassica juncea and S. alba with the ultimate goal of transferring genes for tolerance to Alternaria brassicae and heat stress, the traits that are lacking in cultivated Brassica. We generated three hybrids between B. juncea and S. alba through protoplast fusion. The hybridity was confirmed through cytology and molecular markers. While two of the hybrids were symmetric, the third one was asymmetric and had greater resemblance to B. juncea. Hybrids showed some characteristic features of the parents and were fully male and female fertile and also set seeds upon back crossing with the parent species. In vitro leaf assay and field inoculation studies revealed that the hybrids are highly resistant to A. brassicae. Besides, hybrids set seeds at temperature of >?38 °C when parents failed to produce seeds indicating that hybrids possess heat tolerance. These stable hybrids provide a reliable genetic resource for transfer of genes from S. alba into cultivated Brassica species.  相似文献   

20.
Sunflower, the fifth largest oilseed crop in the world, plays an important role in human diets. Recently, sunflower production in North America has suffered serious yield losses from newly evolved races of sunflower rust (Puccinia helianthi Schwein.). The rust resistance gene, designated R 14 , in a germplasm line PH 3 originated from a wild Helianthus annuus L. population resistant to 11 rust races. PH 3 has seedling with an extraordinary purple hypocotyl color. The objectives of this study were to map both the R 14 rust resistance gene and the purple hypocotyl gene-designated PHC in PH 3, and to identify molecular markers for marker-assisted breeding for sunflower rust resistance. A set of 517 mapped SSR/InDel and four SNP markers was used to detect polymorphisms between the parents. Fourteen markers covering a genetic distance of 17.0 cM on linkage group (LG) 11 were linked to R 14 . R 14 was mapped to the middle of the LG, with a dominant SNP marker NSA_000064 as the closest marker at a distance of 0.7 cM, and another codominant marker ORS542 linked at 3.5 cM proximally. One dominant marker ZVG53 was linked on the distal side at 6.9 cM. The PHC gene was also linked to R 14 with a distance of 6.2 cM. Chi-squared analysis of the segregation ratios of R 14 , PHC, and ten linked markers indicated a deviation from an expected 1:2:1 or 3:1 ratio. The closely linked molecular or morphological markers could facilitate sunflower rust-resistant breeding and accelerate the development of rust-resistant hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号