首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Biophysical journal》2022,121(5):755-768
Ion channels are well known for their ability to regulate the cell membrane potential. However, many ion channels also have functions that do not involve ion conductance. Kv2 channels are one family of ion channels whose non-conducting functions are central to mammalian cell physiology. Kv2.1 and Kv2.2 channels form stable contact sites between the endoplasmic reticulum and plasma membrane via an interaction with endoplasmic reticulum resident proteins. To perform this structural role, Kv2 channels are expressed at extremely high densities on the plasma membranes of many cell types, including central pyramidal neurons, α-motoneurons, and smooth muscle cells. Research from our lab and others has shown that the majority of these plasma membrane Kv2.1 channels do not conduct potassium in response to depolarization. The mechanism of this channel silencing is unknown but is thought to be dependent on channel density in the membrane. Furthermore, the prevalence of a non-conducting population of Kv2.2 channels has not been directly tested. In this work we make improved measurements of the numbers of conducting and non-conducting Kv2.1 channels expressed in HEK293 cells and expand the investigation of non-conducting channels to three additional Kv α-subunits: Kv2.2, Kv1.4, and Kv1.5. By comparing the numbers of gating and conducting channels in individual HEK293 cells, we found that on average, only 50% of both Kv2.1 and Kv2.2 channels conducted potassium and, as previously suggested, that fraction decreased with increased channel density in the plasma membrane. At the highest spatial densities tested, which are comparable with those found at Kv2 clusters in situ, only 20% of Kv2.1 and Kv2.2 channels conducted potassium. We also show for the first time that Kv1.4 and Kv1.5 exhibit density-dependent silencing, suggesting that this phenomenon has an underlying mechanism that is shared by Kv channels from multiple families.  相似文献   

2.
To address mechanisms for the differential sensitivity of voltage-gated Ca2+ channels (Cav) to agonists, channel activity was compared in Xenopus oocytes coexpressing muscarinic M(1) receptors and different Cav alpha1 subunits, all with beta1B,alpha2/delta subunits. Acetyl-beta-methylcholine (MCh) decreased Cav 1.2c currents, did not affect 2.1 or 2.2 currents, but potentiated Cav 2.3 currents. Phorbol 12-myristate 13-acetate (PMA) did not affect Cav 1.2c or 2.1 currents but potentiated 2.2 and 2.3 currents. Comparison of the amino acid sequences of the alpha1 subunits revealed a set of potential protein kinase C phosphorylation sites in common between the 2.2 and 2.3 channels that respond to PMA and a set of potential sites unique to the alpha1 2.3 subunits that respond to MCh. Quadruple Ser --> Ala mutation of the predicted MCh sites in the alpha1 2.3 subunit (Ser-888, Ser-892, and Ser-894 in the II-III linker and Ser-1987 in the C terminus) caused loss of the MCh response but not the PMA response. Triple Ser --> Ala mutation of just the II-III linker sites gave similar results. Ser-888 or Ser-892 was sufficient for the MCh responsiveness, whereas Ser-894 required the presence of Ser-1987. Ser --> Asp substitution of Ser-888, Ser-892, Ser-1987, and Ser-892/Ser-1987 increased the basal current and decreased the MCh response but did not alter the PMA response. These results reveal that sites unique to the II-III linker of alpha1 2.3 subunits mediate the responsiveness of Cav 2.3 channels to MCh. Because Cav 2.3 channels contribute to action potential-induced Ca2+ influx, these sites may account for M1 receptor-mediated regulation of neurotransmission at some synapses.  相似文献   

3.
Aminopyridines such as 4-aminopyridine (4-AP) are widely used as voltage-activated K+ (Kv) channel blockers and can improve neuromuscular function in patients with spinal cord injury, myasthenia gravis, or multiple sclerosis. Here, we present novel evidence that 4-AP and several of its analogs directly stimulate high voltage-activated Ca2+ channels (HVACCs) in acutely dissociated neurons. 4-AP, 4-(aminomethyl)pyridine, 4-(methylamino)pyridine, and 4-di(methylamino)pyridine profoundly increased HVACC, but not T-type, currents in dissociated neurons from the rat dorsal root ganglion, superior cervical ganglion, and hippocampus. The widely used Kv channel blockers, including tetraethylammonium, α-dendrotoxin, phrixotoxin-2, and BDS-I, did not mimic or alter the effect of 4-AP on HVACCs. In HEK293 cells expressing various combinations of N-type (Cav2.2) channel subunits, 4-AP potentiated Ca2+ currents primarily through the intracellular β3 subunit. In contrast, 4-AP had no effect on Cav3.2 channels expressed in HEK293 cells. Furthermore, blocking Kv channels did not mimic or change the potentiating effects of 4-AP on neurotransmitter release from sensory and motor nerve terminals. Thus, our findings challenge the conventional view that 4-AP facilitates synaptic and neuromuscular transmission by blocking Kv channels. Aminopyridines can directly target presynaptic HVACCs to potentiate neurotransmitter release independent of Kv channels.  相似文献   

4.
Kv2.1 is a voltage-gated potassium (Kv) channel that generates delayed rectifier currents in mammalian heart and brain. The biophysical properties of Kv2.1 and other ion channels have been characterized by functional expression in heterologous systems, and most commonly in Xenopus laevis oocytes. A number of previous oocyte-based studies of mammalian potassium channels have revealed expression-level-dependent changes in channel properties, leading to the suggestion that endogenous oocyte factors regulate channel gating. Here, we show that endogenous oocyte potassium channel KCNE ancillary subunits xMinK and xMiRP2 slow the activation of oocyte-expressed mammalian Kv2.1 channels two-to-fourfold. This produces a sigmoidal relationship between Kv2.1 current density and activation rate in oocyte-based two-electrode voltage clamp studies. The effect of endogenous xMiRP2 and xMinK on Kv2.1 activation is diluted at high Kv2.1 expression levels, or by RNAi knockdown of either endogenous subunit. RNAi knockdown of both xMiRP2 and xMinK eliminates the correlation between Kv2.1 expression level and activation kinetics. The data demonstrate a molecular basis for expression-level-dependent changes in Kv channel gating observed in heterologous expression studies.  相似文献   

5.
Scorpion toxin Ctri9577, as a potent Kv1.3 channel blocker, is a new member of the α-KTx15 subfamily which are a group of blockers for Kv4.x potassium channels. However, the pharmacological function of Ctri9577 for Kv4.x channels remains unknown. Scorpion toxin Ctri9577 was found to effectively inhibit Kv4.3 channel currents with IC50 value of 1.34 ± 0.03 μM. Different from the mechanism of scorpion toxins as the blocker recognizing channel extracellular pore entryways, Ctri9577 was a novel gating modifier affecting voltage dependence of activation, steady-state inactivation, and the recovery process from the inactivation of Kv4.3 channel. However, Ctri9755, as a potent Kv1.3 channel blocker, was found not to affect voltage dependence of activation of Kv1.3 channel. Interestingly, pharmacological experiments indicated that 1 μM Ctri9755 showed less inhibition on Kv4.1 and Kv4.2 channel currents. Similar to the classical gating modifier of spider toxins, Ctri9577 was shown to interact with the linker between the transmembrane S3 and S4 helical domains through the mutagenesis experiments. To the best of our knowledge, Ctri9577 was the first gating modifier of potassium channels among scorpion toxin family, and the first scorpion toxin as both gating modifier and blocker for different potassium channels. These findings further highlighted the structural and functional diversity of scorpion toxins specific for the potassium channels.  相似文献   

6.
Dipeptidyl aminopeptidase-like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U. Lin, M.J. Saganich, T. McCormack, K.O. Akinsanya, S.Y. Qi, and B. Rudy. 2005. J. Biol. Chem. 280:18853-18861). However, the underlying mechanism of action is unknown. We hypothesized that a unique interaction between the Kv4.2 channel and a DPLP found in brain (DPPX-S) may remodel the channel's voltage-sensing domain. To test this hypothesis, we implemented a robust experimental system to measure Kv4.2 gating currents and study gating charge dynamics in the absence and presence of DPPX-S. The results demonstrated that coexpression of Kv4.2 and DPPX-S causes a -26 mV parallel shift in the gating charge-voltage (Q-V) relationship. This shift is associated with faster outward movements of the gating charge over a broad range of relevant membrane potentials and accelerated gating charge return upon repolarization. In sharp contrast, DPPX-S had no effect on gating charge movements of the Shaker B Kv channel. We propose that DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement. The remodeling of gating charge dynamics may involve specific protein-protein interactions of the DPPX-S's transmembrane segment with the voltage-sensing and pore domains of the Kv4.2 channel. This mechanism may determine the characteristic fast operation of neuronal Kv4 channels in the subthreshold range of membrane potentials.  相似文献   

7.
K+ channel gating currents are usually measured in the absence of permeating ions, when a common feature of channel closing is a rising phase of off-gating current and slow subsequent decay. Current models of gating invoke a concerted rearrangement of subunits just before the open state to explain this very slow charge return from opening potentials. We have measured gating currents from the voltage-gated K+ channel, Kv1.5, highly overexpressed in human embryonic kidney cells. In the presence of permeating K+ or Cs+, we show, by comparison with data obtained in the absence of permeant ions, that there is a rapid return of charge after depolarizations. Measurement of off-gating currents on repolarization before and after K+ dialysis from cells allowed a comparison of off-gating current amplitudes and time course in the same cells. Parallel experiments utilizing the low permeability of Cs+ through Kv1.5 revealed similar rapid charge return during measurements of off-gating currents at ECs. Such effects could not be reproduced in a nonconducting mutant (W472F) of Kv1.5, in which, by definition, ion permeation was macroscopically absent. This preservation of a fast kinetic structure of off-gating currents on return from potentials at which channels open suggests an allosteric modulation by permeant cations. This may arise from a direct action on a slow step late in the activation pathway, or via a retardation in the rate of C-type inactivation. The activation energy barrier for K+ channel closing is reduced, which may be important during repetitive action potential spiking where ion channels characteristically undergo continuous cyclical activation and deactivation.  相似文献   

8.
目的:比较蛇床子素对不同钙通道亚型的作用差异。方法:首先在tsA201细胞上瞬时转染Cavl.2,Cav1.3,Cav2.2e[37a],和Cav2.2e[37b]通道,然后采用全细胞膜片钳技术,记录tsA201细胞上的钙电流,并观察蛇床子素对各种钙通道亚型的影响。结果:蛇床子素可以浓度依赖性抑制Cav1.2和Cav1.3电流,抑制的半有效浓度分别为162.1μmol·L-1和56.2μmol·L-1.此外,蛇床子素对Cav2.2通道也有一定的抑制作用,在300μmol·L-1。的浓度下,抑制38%的Cav2.2e[37a]电流和61%的Cav2.2e[37b]电流,蛇床子素对钙电流的抑制是快速可逆的。蛇床子素在各个测试电位水平均能抑制上述四种钙通道电流,但不改变电流的激活阂值和最大峰值电流的激活电压。结论:蛇床子素以浓度依赖的方式抑制多种钙通道亚型并表现出不同的亲和力。  相似文献   

9.
T-type calcium channels play critical roles in controlling neuronal excitability, including the generation of complex spiking patterns and the modulation of synaptic plasticity, although the mechanisms and extent to which T-type Ca(2+) channels are modulated by G-protein-coupled receptors (GPCRs) remain largely unexplored. To examine specific interactions between T-type Ca(2+) channel subtypes and muscarinic acetylcholine receptors (mAChRS), the Cav3.1 (alpha(1G)), Cav3.2 (alpha(1H)), and Cav3.3 (alpha) T-type Ca(2+)(1I)channels were co-expressed with the M1 Galpha(q/11)-coupled mAChR. Perforated patch recordings demonstrate that activation of M1 receptors has a strong inhibitory effect on Cav3.3 T-type Ca(2+) currents but either no effect or a moderate stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. This differential modulation was observed for both rat and human T-type Ca(2+) channel variants. The inhibition of Cav3.3 channels by M1 receptors is reversible, use-independent, and associated with a concomitant increase in inactivation kinetics. Loss-of-function experiments with genetically encoded antagonists of Galpha and Gbetagamma proteins and gain-of-function experiments with genetically encoded Galpha subtypes indicate that M1 receptor-mediated inhibition of Cav3.3 occurs through Galpha(q/11). This is supported by experiments showing that activation of the M3 and M5 Galpha(q/11)-coupled mAChRs also causes inhibition of Cav3.3 currents, although Galpha(i)-coupled mAChRs (M2 and M4) have no effect. Examining Cav3.1-Cav3.3 chimeric channels demonstrates that two distinct regions of the Cav3.3 channel are necessary and sufficient for complete M1 receptor-mediated channel inhibition and represent novel sites not previously implicated in T-type channel modulation.  相似文献   

10.
To identify the mechanisms underlying the faster activation kinetics in Kv1.2 channels compared to Kv2.1 channels, ionic and gating currents were studied in rat Kv1.2 and human Kv2.1 channels heterologously expressed in mammalian cells. At all voltages the time course of the ionic currents could be described by an initial sigmoidal and a subsequent exponential component and both components were faster in Kv1.2 than in Kv2.1 channels. In Kv1.2 channels, the activation time course was more sigmoid at more depolarized potentials, whereas in Kv2.1 channels it was somewhat less sigmoid at more depolarized potentials. In contrast to the ionic currents, the ON gating currents were similarly fast for both channels. The main portion of the measured ON gating charge moved before the ionic currents were activated. The equivalent gating charge of Kv1.2 ionic currents was twice that of Kv2.1 ionic currents, whereas that of Kv1.2 ON gating currents was smaller than that of Kv2.1 ON gating currents. In conclusion, the different activation kinetics of Kv1.2 and Kv2.1 channels are caused by rate-limiting reactions that follow the charge movement recorded from the gating currents. In Kv1.2 channels, the reaction coupling the voltage-sensor movement to the pore opening contributes to rate limitation in a voltage-dependent fashion, whereas in Kv2.1 channels, activation is additionally rate-limited by a slow reaction in the subunit gating.  相似文献   

11.
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca2+ channels toward a mechanistic study on the effect of EGCG on [Ca2+]i. Confocal Ca2+ imaging showed that EGCG induces a [Ca2+]i spike which is due to extracellular Ca2+ entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca2+channel blockers. siRNA knockdown of T-type Ca2+ channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K+ currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K+ channel induced a reduction of the EGCG [Ca2+]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K+ current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca2+]i by EGCG may be relevant in breast cancer treatment.  相似文献   

12.
The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG+) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs+, displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K+, suggesting that K+ ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG+ ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K+, allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics.  相似文献   

13.
The epileptic encephalopathies are a group of highly heterogeneous genetic disorders. The majority of disease-causing mutations alter genes encoding voltage-gated ion channels, neurotransmitter receptors, or synaptic proteins. We have identified a novel de novo pathogenic K+ channel variant in an idiopathic epileptic encephalopathy family. Here, we report the effects of this mutation on channel function and heterologous expression in cell lines. We present a case report of infantile epileptic encephalopathy in a young girl, and trio-exome sequencing to determine the genetic etiology of her disorder. The patient was heterozygous for a de novo missense variant in the coding region of the KCNB1 gene, c.1133T>C. The variant encodes a V378A mutation in the α subunit of the Kv2.1 voltage-gated K+ channel, which is expressed at high levels in central neurons and is an important regulator of neuronal excitability. We found that expression of the V378A variant results in voltage-activated currents that are sensitive to the selective Kv2 channel blocker guangxitoxin-1E. These voltage-activated Kv2.1 V378A currents were nonselective among monovalent cations. Striking cell background–dependent differences in expression and subcellular localization of the V378A mutation were observed in heterologous cells. Further, coexpression of V378A subunits and wild-type Kv2.1 subunits reciprocally affects their respective trafficking characteristics. A recent study reported epileptic encephalopathy-linked missense variants that render Kv2.1 a tonically activated, nonselective cation channel that is not voltage activated. Our findings strengthen the correlation between mutations that result in loss of Kv2.1 ion selectivity and development of epileptic encephalopathy. However, the strong voltage sensitivity of currents from the V378A mutant indicates that the loss of voltage-sensitive gating seen in all other reported disease mutants is not required for an epileptic encephalopathy phenotype. In addition to electrophysiological differences, we suggest that defects in expression and subcellular localization of Kv2.1 V378A channels could contribute to the pathophysiology of this KCNB1 variant.  相似文献   

14.
In airways Cl- secretion is activated and Na+ absorption is inhibited when P2Y2 receptors are stimulated by ATP or UTP. Both nucleotides are subject to degradation to ADP and UDP by ecto-nucleotidases. Here we show that these metabolites change electrolyte transport by stimulation of P2Y6 receptors in mouse trachea. Immunohistochemistry confirmed luminal and basolateral expression of P2Y6 receptors. In Ussing chamber experiments luminal ADP, UDP or the P2Y6 receptor agonist INS48823 induced both transient and persistent increase in short circuit currents (ISC). Activation of ISC was inhibited by the P2Y6 receptor blocker PPADS. The transient response was inhibited by DIDS, whereas the persistent ISC was inhibited by glibenclamide and by the protein kinase A (PKA) blocker H-89. Moreover, sustained activation of ISC by luminal UDP was inhibited by blocking basolateral K+ channels with 293B. Possible effects of diphosphates on P2Y1 or adenosine receptors were excluded by the inhibitors MRS2179 and 8-SPT, respectively. Inhibition of amiloride sensitive Na+ absorption was only seen after blocking basolateral K+ channels with 293B. In contrast, Cl- secretion activated by basolateral ADP or UDP was only transient and was blocked by the sk4 K+ channel blocker clotrimazole. In summary, activation of luminal P2Y6 receptors in the airways shifts electrolyte transport towards secretion by increasing intracellular Ca+ and activation of PKA.  相似文献   

15.
Our interest was drawn to the I-II loop of Cav3 channels for two reasons: one, transfer of the I-II loop from a high voltage-activated channel (Cav2.2) to a low voltage-activated channel (Cav3.1) unexpectedly produced an ultra-low voltage activated channel; and two, sequence variants of the I-II loop found in childhood absence epilepsy patients altered channel gating and increased surface expression of Cav3.2 channels. To determine the roles of this loop we have studied the structure of the loop and the biophysical consequences of altering its structure. Deletions localized the gating brake to the first 62 amino acids after IS6 in all three Cav3 channels, establishing the evolutionary conservation of this region and its function. Circular dichroism was performed on a purified fragment of the I-II loop from Cav3.2 to reveal a high α-helical content. De novo computer modeling predicted the gating brake formed a helix-loop-helix structure. This model was tested by replacing the helical regions with poly-proline-glycine (PGPGPG), which introduces kinks and flexibility. These mutations had profound effects on channel gating, shifting both steady-state activation and inactivation curves, as well as accelerating channel kinetics. Mutations designed to preserve the helical structure (poly-alanine, which forms α-helices) had more modest effects. Taken together, we conclude the second helix of the gating brake establishes important contacts with the gating machinery, thereby stabilizing a closed state of T-channels, and that this interaction is disrupted by depolarization, allowing the S6 segments to spread open and Ca (2+) ions to flow through.  相似文献   

16.
Yamakawa T  Saith S  Li Y  Gao X  Gaisano HY  Tsushima RG 《Biochemistry》2007,46(38):10942-10949
Kv4.2 channels are responsible in the heart for the Ca2+-independent transient outward currents and are important in regulating myocardial excitability and Ca2+ homeostasis. We have identified previously the expression of syntaxin 1A (STX1A) on the cardiac ventricular myocyte plasma membranes, and its modulation of cardiac ATP-sensitive K+ channels. We speculated that STX1A interacts with other cardiac ion channels, thus we examined the interaction of STX1A with Kv4.2 channels. Co-immunoprecipitation and GST pulldown assays demonstrated a direct interaction of STX1A with the Kv4.2 N-terminus. We next investigated the functional alterations of Kv4.2 gating by STX1A in Xenopus oocytes. Coexpression of Kv4.2 with STX1A (1) resulted in a reduction of Kv4.2 current amplitude; (2) caused a depolarizing shift of the steady-state inactivation curve; (3) enhanced the rate of current decay; and (4) accelerated the rate of recovery from inactivation. Additional coexpression of botulinum neurotoxin C, which cleaves STX1A, reversed the effects of STX1A on Kv4.2. STX1A inhibited partially the gating changes by KChIP2, suggesting a competitive interaction of these proteins for an overlapping binding region on the N-terminus of Kv4.2. Indeed, the N-terminal truncation mutants of Kv4.2 (Kv4.2Delta2-40 and Kv4.2Delta7-11), which form part of the KChIP2 binding site, displayed reduced sensitivity to STX1A modulation. Our study suggests that STX1A directly modulates Kv4.2 current amplitude and gating through its interaction with an overlapping region of the KChIP binding motif domain on the Kv4.2 N-terminus.  相似文献   

17.
Mutations in the Cav2.1 alpha1-subunit of P/Q-type Ca2+ channels cause human diseases, including familial hemiplegic migraine type-1 (FHM1). FHM1 mutations alter channel gating and enhanced channel activity at negative potentials appears to be a common pathogenetic mechanism. Different beta-subunit isoforms (primarily beta4 and beta3) participate in the formation of Cav2.1 channel complexes in mammalian brain. Here we investigated not only whether FHM1 mutations K1336E (KE), W1684R (WR), and V1696I (VI) can affect Cav2.1 channel function but focused on the important question whether mutation-induced changes on channel gating depend on the beta-subunit isoform. Mutants were co-expressed in Xenopus oocytes together with beta1, beta3, or beta4 and alpha2delta1 subunits, and channel function was analyzed using the two-electrode voltage-clamp technique. WR shifted the voltage dependence for steady-state inactivation of Ba2+ inward currents (IBa) to more negative voltages with all beta-subunits tested. In contrast, a similar shift was observed for KE only when expressed with beta3. All mutations promoted IBa decay during pulse trains only when expressed with beta1 or beta3 but not with beta4. Enhanced decay could be explained by delayed recovery from inactivation. KE accelerated IBa inactivation only when co-expressed with beta3, and VI slowed inactivation only with beta1 or beta3. KE and WR shifted channel activation of IBa to more negative voltages. As the beta-subunit composition of Cav2.1 channels varies in different brain regions, our data predict that the functional FHM1 phenotype also varies between different neurons or even within different neuronal compartments.  相似文献   

18.
GIRK (G protein-activated inward-rectifying K(+) channel) channels, important regulators of membrane excitability in the heart and in the central nervous, are activated by interaction with betagamma subunits from heterotrimeric G proteins upon receptor stimulation. For activation interaction of the channel with phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P(2)) is conditional. Previous studies have provided evidence that in myocytes PtIns(4,5)P(2) levels relevant to GIRK channel regulation are under regulatory control of receptors activating phospholipase C. In the present study a phosphatidyl-4-phosphate 5-kinase was expressed in atrial myocytes by transient transfection. This did not affect basal properties of GIRK current activated by acetylcholine via M(2) receptors but completely abolished inhibition of guanosine triphosphate-gamma-S activated current by endothelin-1 or alpha-adrenergic agonists. We conclude that though PtIns(4,5)P(2) is conditional for channel gating, its normal level in the membrane is not limiting basal function of GIRK channels. Moreover, our data provide further evidence for a regulation of GIRK channels by alpha(1A) receptors and endothelin-A receptors, endogenously expressed in atrial myocytes, via depletion of PtIns(4,5)P(2).  相似文献   

19.
The KV7 (KCNQ) subfamily of voltage-gated K+ channels consists of five members (KV7.1- KV7.5) giving rise to non-inactivating, and slowly activating/deactivating currents mainly expressed in cardiac (KV7.1) and neuronal (KV7.2- KV7.5) tissue. In the present study, using the cut-open oocyte voltage clamp, we studied the relation of the ionic currents from homomeric neuronal Kv7 channels (KV7.2-KV7.5) with the gating currents recorded after K+ conductance blockade from the same channels. Increasing the recording temperature from 18{degree sign}C to 28{degree sign}C accelerated activation/deactivation kinetics of the ionic currents in all homomeric KV7 channels (activation Q10s at 0 mV were 3.8, 4.1, 8.3, and 2.8 for Kv7.2, Kv7.3, Kv7.4 and Kv7.5 channels, respectively), without large changes in currents voltage-dependence; moreover, at 28{degree sign}C, ionic currents carried by KV7.4 channels also showed a significant increase in their maximal value. Gating currents were only resolved in KV7.4 and KV7.5 channels; the size of the ON gating charges at +40 mV was 1.34 ± 0.34 nC for KV7.4, and 0.79 ± 0.20 nC for KV7.5. At 28{degree sign}C, KV7.4 gating currents had the following salient properties: 1) similar time integral of QON and QOFF, indicating no charge immobilization; 2) a left-shift in the V1/2 of the QON/V when compared to the G/V (≈ 50 mV in the presence of 2 mM extracellular Ba2+); 3) a QON decay faster than ionic current activation; and 4) a rising phase in the OFF gating charge after depolarizations larger than 0 mV. These observations suggest that, in KV7.4 channels, VSD movement is followed by a slow and/or low bearing charge step linking to pore opening, a result which may help to clarify the molecular consequence of disease-causing mutations and drugs affecting channel gating.  相似文献   

20.
We report a novel signal transduction complex of the angiotensin receptor type 1. In this complex the angiotensin receptor type 1 associates with the potassium channel alpha-subunit Kv4.3 and regulates its intracellular distribution and gating properties. Co-localization of Kv4.3 with angiotensin receptor type 1 and fluorescent resonance energy transfer between those two proteins labeled with cyan and yellow-green variants of green fluorescent protein revealed that Kv4.3 and angiotensin receptor type I are located in close proximity to each other in the cell. The angiotensin receptor type 1 also co-immunoprecipitates with Kv4.3 from canine ventricle or when co-expressed with Kv4.3 and its beta-subunit KChIP2 in human embryonic kidney 293 cells. Treatment of the cells with angiotensin II results in the internalization of Kv4.3 in a complex with the angiotensin receptor type 1. When stimulated with angiotensin II, angiotensin receptors type 1 modulate gating properties of the remaining Kv4.3 channels on the cell surface by shifting their activation voltage threshold to more positive values. We hypothesize that the angiotensin receptor type 1 provides its internalization molecular scaffold to Kv4.3 and in this way regulates the cell surface representation of the ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号