首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In Escherichia coli cellular levels of pppGpp and ppGpp, collectively called (p)ppGpp, are maintained by the products of two genes, relA and spoT. Like E. coli, Vibrio cholerae also possesses relA and spoT genes. Here we show that similar to E. coli, V. cholerae ΔrelA cells can accumulate (p)ppGpp upon carbon starvation but not under amino acid starved condition. Although like in E. coli, the spoT gene function was found to be essential in V. cholerae relA + background, but unlike E. coli, several V. cholerae ΔrelA ΔspoT mutants constructed in this study accumulated (p)ppGpp under glucose starvation. The results suggest a cryptic source of (p)ppGpp synthesis in V. cholerae, which is induced upon glucose starvation. Again, unlike E. coli ΔrelA ΔspoT mutant (ppGpp0 strain), the V. cholerae ΔrelA ΔspoT mutants showed certain unusual phenotypes, which are (a) resistance towards 3-amino-1,2,4-triazole (AT); (b) growth in nutrient poor M9 minimal medium; (c) ability to stringently regulate cellular rRNA accumulation under glucose starvation and (d) initial growth defect in nutrient rich medium. Since these phenotypes of ΔrelA ΔspoT mutants could be reverted back to ΔrelA phenotypes by providing SpoT in trans, it appears that the spoT gene function is crucial in V. cholerae. Part of this work was presented at the International Symposium on Chemical Biology, Kolkata, India, 7–9 March 2007.  相似文献   

4.

Background  

Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061.  相似文献   

5.
Summary.  2H-Pyran-2-ones 1 were transformed with various hydrazines into (E)- or (Z)-α,β-didehydro-α-amino acid (DDAA) derivatives 4 (and 7) containing a highly substituted pyrazolyl moiety attached at the β-position. With heterocyclic hydrazines, the products 4 were accompanied also by decarboxylated enamines E-6. In order to separate (E/Z)-mixtures of acids, they were transformed to the corresponding methyl esters 9 and 10 by the application of diazomethane. Catalytic hydrogenation under high pressures with Pd/C as a catalyst resulted in the formation of racemic alanine derivatives 11. Received January 29, 2002 Accepted May 27, 2002 Published online December 18, 2002 RID="*" ID="*"  Dedicated with deep respect to Professor Waldemar Adam on the occasion of his 65th birthday. Acknowledgements We thank the Ministry of Education, Science and Sport of the Republic of Slovenia for the financial support (P0-0503-103). Dr. B. Kralj and Dr. D. Žigon (Center for Mass Spectroscopy, “Jožef Stefan” Institute, Ljubljana, Slovenia) are gratefully acknowledged for the mass measurements. Authors' address: Prof. Marijan Kočevar, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia, E-mail: marijan.kocevar@uni-lj.si  相似文献   

6.
Strigolactones (SLs) are a recently discovered type of plant hormone that controls various developmental processes. The DWARF53 (D53) protein in rice and the SMAX1-LIKE (SMXL) family in Arabidopsis repress SL signaling. In this study, bioinformatics analyses were performed, and 236 SMXL proteins were identified in 28 sequenced plants. A phylogenetic analysis indicated that all potential SMXL proteins could be divided into three groups and that the SMXL proteins may have originated in Bryophytes. An analysis of the SMXL chromosomal locations suggested that gene duplication events at different times led to expansion of the SMXL family members in Angiospermae. Subsequently, the gene structure and protein modeling of MdSMXLs showed that they are highly conserved. The expression patterns of MdSMXLs indicated that they were expressed in different organs of apple (stems, roots, leaves, flowers, and fruits) at varying levels and that MdSMXLs may participate in the SL signaling pathway and the response to abiotic stress. This study provides a valuable foundation for additional investigations into the function of the SMXL gene family in plants.  相似文献   

7.
8.
We studied heterologous expression of xylanase 11A gene of Chaetomium thermophilum in Pichia pastoris and characterized the thermostable nature of the purified gene product. For this purpose, the xylanase 11A gene of C. thermophilum was cloned in P. pastoris GS115 under the control of AOX1 promoter. The maximum extracellular activity of recombinant xylanase (xyn698: gene with intron) was 15.6 U ml−1 while that of recombinant without intron (xyn669) was 1.26 U ml−1 after 96 h growth. The gene product was purified apparently to homogeneity level. The optimum temperature of pure recombinant xylanase activity was 70°C and the enzyme retained its 40.57% activity after incubation at 80°C for 10 min. It exhibited quite lower demand of activation energy, enthalpy, Gibbs free energy, entropy, and xylan binding energy during substrate hydrolysis than that required by that of the donor, thus indicating its thermostable nature. pH-dependent catalysis showed that it was quite stable in a pH range of 5.5–8.5. This revealed that gene was successfully processed in Ppastoris and remained heat stable and may qualify for its potential use in paper and pulp and animal feed applications.  相似文献   

9.
10.
11.
12.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

13.
Efficient transformation of leaf disc-derived callus of Codonopsis lanceolata was obtained using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector, pYBI121, that carries the neomycin phosphotransferase (npt II) gene as a selectable marker. The green shoots recovered from agroinfected explants on selection medium (containing 0.1 mg/l α-naphthaleneacetic acid (NAA), 1 mg/l 6-benzylaminopurine (BAP), 100 mg/l kanamycin, and 250 mg/l cefotaxime) were rooted on Murashige and Skoog (MS) medium supplemented with 2 mg/l IBA and 10 mg/l kanamycin. To optimize the transformation conditions, several factors were assessed, including the co-cultivation period, the duration of pre- and post-culture in darkness and light, the kanamycin concentration, and the Agrobacterium densities. We produced transgenic Codonopsis lanceolata overexpressing γ-tocopherol methyltransferase (γ-TMT) by this protocol. Moreover, the α-tocopherol content of the plants was enhanced by the overexpression of this gene. Bimal Kumar Ghimire and Eun Soo Seong contributed equally to this work.  相似文献   

14.
15.
Jiayun Qiao  Yunhe Cao 《Biologia》2012,67(4):649-653
Two chimeric genes, XynA-Bs-Glu-1 and XynA-Bs-Glu-2, encoding Aspergillus sulphureus β-xylanase (XynA, 26 kDa) and Bacillus subtilis β-1,3-1,4-glucanase (Bs-Glu, 30 kDa), were constructed via in-fusion by different linkers and expressed successfully in Pichia pastoris. The fusion protein (50 kDa) exhibited both β-xylanase and β-1,3-1,4-glucanase activities. Compared with parental enzymes, the moiety activities were decreased in fermentation supernatants. Parental XynA and Bs-Glu were superior to corresponding moieties in each fusion enzymes because of lower Kn higher kcat. Despite some variations, common optima were generally 50°C and pH 3.4 for the XynA moiety and parent, and 40°C and pH 6.4 for the Bs-Glu counterparts. Thus, the fusion enzyme XynA-Bs-Glu-1 and XynA-Bs-Glu-2 were bifunctional.  相似文献   

16.
Alpha-amylases are important industrial enzymes with a wide range of applications. Although medium-temperature alpha amylase (AmyE) has some practical advantages, its low yield has limited its applications. When an amyE gene from Bacillus subtilis BF768 was cloned into vector pWB980 and over-expressed in B. subtilis WB600, high activities (723 U ml−1) of secreted AmyE were produced. Recombinant AmyE was purified to a specific activity of 36 U mg−1 having optimal activity at pH 6.0 and 60°C.  相似文献   

17.
Metallo-β-lactamase from Bacillus anthracis (Bla2) catalyzes the hydrolysis of β-lactam antibiotics which are commonly prescribed to combat bacterial infections. Bla2 contributes to the antibiotic resistance of this bacterium. An understanding of it is necessary to design potential inhibitors that can be introduced with current antibiotics for effective eradication of anthrax infections. We have purified Bla2 using Ni2+-affinity chromatography with over 140-fold increase in activity with a yield of 3.5%. The final specific activity was 19,000 units/mg. Purified Bla2 displays different K m , V max , and (k cat /K M) with penicillin G and cephalexin as substrates and is also sensitive to pH, with maximum activity between pH 7.0–9.0. The IC50 (50% inhibition concentration) value of EDTA against Bla2 is 630 nM, which can be understood by observing its three-dimensional interaction with the enzyme.  相似文献   

18.
Raw starch is the most abundant source of glucose in the world. Therefore, finding enzymes capable of digesting raw starch would find high industrial demand. The α-amylase gene of Bacillus amyloliquefaciens ATCC 23842 was amplified, cloned and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant enzyme was purified to apparent homogeneity using ion exchange and gel filtration chromatography. The raw-starch digestibility of the purified enzyme was characterized by studying the hydrolysis and adsorption rate on a variety of raw starches (potato, cassava, corn, wheat and rice). The raw-starch digestion was further confirmed by scanning electron microscopy studies, which revealed an effective rate of hydrolysis. The kinetic studies revealed a relatively low K m of 2.76 mg/mL, exhibiting high affinity towards the soluble starch as the most preferred substrate and the inhibition kinetic studies revealed a high K i value (350 mM).  相似文献   

19.

Objectives

To clone and characterize a novel bi-functional α-amylase/subtilisin inhibitor (LASI) from the rhizome of Ligusticum chuanxiong, a traditional Chinese medicine.

Results

The LASI showed strong homology with members of the Kunitz trypsin inhibitor family. Its putative amino acid sequence has a 40 % identity with that of the α-amylase/subtilisin inhibitor from rice. LASI gene without signal peptide was expressed in E. coli Rosetta. After purification, the recombinant LASI protein was inhibitory against not only α-amylase from porcine pancreas, Helicoverpa armigera, Spodoptera litura and Plutella xylostella, but also subtilisin A, but not against trypsin or chymotrypsin. In addition, the expression level of LASI in rhizome was higher than that in leaf and LASI expression was enhanced by salt, chilling and drought treatment.

Conclusions

This is the first member of the Kunitz-protease inhibitor family identified in traditional Chinese medicine and it might be involved in the plant defense responses against lepidopterous pests, microorganisms and abiotic stresses.
  相似文献   

20.
TNFalpha and TNFbeta, or linfotoxin (LTalpha), are two molecules playing an important role in inflammation. Their genes map on Chromosome 6, between the HLA class II and class I loci. Polymorphisms in, or near, TNF genes have been associated with susceptibility to several autoimmune diseases. Studies of TNF genes in celiac disease (CD) have presented contradictory results. We have assessed the role of TNFalpha and linfotoxin alpha (TNFbeta) in CD and their relative value as CD markers in addition to the presence of DQ2. The TNFA -308 polymorphism and the polymorphism at the first intron of the LTA gene were typed in CD patients and healthy controls and the results were correlated with the presence of DQ2. Significant differences were found in genotype and allele frequencies for the TNFA and LTA genes between CD patients and controls, with an increase in the presence of the TNFA*2 and LTA*1 alleles in CD patients. These differences increase when DQ2-positive CD patients and DQ2-positive controls are compared. In DQ2-positive individuals, allele 2 (A) in position -308 of the promoter of TNFA and allele 1 (G) of the NcoI RFLP in the first intron of LTA are additional risk markers for CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号