首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Microorganisms catabolize carbon-containing compounds in their environment during growth, releasing a subset of metabolic byproducts as volatile compounds. However, the relationship between growth media and the production of volatile compounds has been largely unexplored to-date.

Objectives

To assess the core and media-specific components of the Klebsiella pneumoniae volatile metabolome via growth in four in vitro culture media.

Methods

Headspace volatiles produced by cultures of K. pneumoniae after growth to stationary phase in four rich media (brain heart infusion broth, lysogeny broth, Mueller-Hinton broth, and tryptic soy broth) were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Differences in the composition of headspace volatiles as a function of growth media were assessed using hierarchical clustering analysis (HCA) and principal component analysis (PCA).

Results

A total of 365 volatile compounds were associated with the growth of K. pneumoniae across all media, of which 36 (10%) were common to all growth media, and 148 (41%) were specific to a single medium. In addition, utilizing all K. pneumoniae-associated volatile compounds, strains clustered as a function of growth media, demonstrating the importance of media in determining the metabolic profile of this organism.

Conclusion

K. pneumoniae produces a core suite of volatile compounds across all growth media studied, although the volatile metabolic signature of this organism is fundamentally media-dependent.
  相似文献   

2.

Introduction

Metabolomics has become a valuable tool in many research areas. However, generating metabolomics-based biochemical profiles without any related bioactivity is only of indirect value in understanding a biological process. Therefore, metabolomics research could greatly benefit from tools that directly determine the bioactivity of the detected compounds.

Objective

We aimed to combine LC–MS metabolomics with a cell based receptor assay. This combination could increase the understanding of biological processes and may provide novel opportunities for functional metabolomics.

Methods

We developed a flow through biosensor with human cells expressing both the TRPV1, a calcium ion channel which responds to capsaicin, and the fluorescent intracellular calcium ion reporter, YC3.6. We have analysed three contrasting Capsicum varieties. Two were selected with contrasting degrees of spiciness for characterization by HPLC coupled to high mass resolution MS. Subsequently, the biosensor was then used to link individual pepper compounds with TRPV1 activity.

Results

Among the compounds in the crude pepper fruit extracts, we confirmed capsaicin and also identified both nordihydrocapsaicin and dihydrocapsaicin as true agonists of the TRPV1 receptor. Furthermore, the biosensor was able to detect receptor activity in extracts of both Capsicum fruits as well as a commercial product. Sensitivity of the biosensor to this commercial product was similar to the sensory threshold of a human sensory panel.

Conclusion

Our results demonstrate that the TRPV1 biosensor is suitable for detecting bioactive metabolites. Novel opportunities may lie in the development of a continuous functional assay, where the biosensor is directly coupled to the LC–MS.
  相似文献   

3.

Introduction

The process of tomato (Solanum lycopersicum) breeding has affected negatively the fruit organoleptic properties and this is evident when comparing modern cultivars with heirloom varieties. Flavor of tomato fruit is determined by a complex combination of volatile and nonvolatile metabolites that is not yet understood.

Objectives

The aim of this work was to provide an alternative approach to exploring the relationship between tomato odour/taste and volatile organic compounds (VOCs).

Methods

VOC composition and organoleptic properties of seven Andean tomato landraces along with an edible wild species (Solanum pimpinellifolium) and four commercial varieties were characterized. Six hedonic traits were analyzed by a semitrained sensory panel to describe the organoleptic properties. Ninety-four VOCs were analyzed by headspace solid phase microextraction/gas chromatography–mass spectrometry (HS/SPME/GC–MS). The relationship between sensory data and VOCs was explored using an Artificial Neural Networks model (Kohonen Self Organizing Maps, omeSOM).

Results and Conclusion

The results showed a strong preference by panelists for tomatoes of landraces than for commercial varieties and wild species. The predictive analysis by omeSOM showed 15 VOCs significantly associated to the typical and atypical tomato odour and taste. Moreover, omeSOM was used to predict the relationship of VOC ratios with sensory data. A total of 108 VOC ratios out of 8837 VOC ratios were predicted to be contributing to the typical and atypical tomato odour and taste. The metabolic origin of these flavor-associated VOCs and the metabolic point or target for breeding strategies were discussed.
  相似文献   

4.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

5.
Lyu  Chuqiao  Wang  Lei  Zhang  Juhua 《BMC genomics》2018,19(10):905-165

Background

The DNase I hypersensitive sites (DHSs) are associated with the cis-regulatory DNA elements. An efficient method of identifying DHSs can enhance the understanding on the accessibility of chromatin. Despite a multitude of resources available on line including experimental datasets and computational tools, the complex language of DHSs remains incompletely understood.

Methods

Here, we address this challenge using an approach based on a state-of-the-art machine learning method. We present a novel convolutional neural network (CNN) which combined Inception like networks with a gating mechanism for the response of multiple patterns and longterm association in DNA sequences to predict multi-scale DHSs in Arabidopsis, rice and Homo sapiens.

Results

Our method obtains 0.961 area under curve (AUC) on Arabidopsis, 0.969 AUC on rice and 0.918 AUC on Homo sapiens.

Conclusions

Our method provides an efficient and accurate way to identify multi-scale DHSs sequences by deep learning.
  相似文献   

6.

Background and aims

Microalgae are ubiquitous in paddy soils. However, their roles in arsenic (As) accumulation and transport in rice plants remains unknown.

Methods

Two green algae and five cyanobacteria were used in pot experiments under continuously flooded conditions to ascertain whether a microalgal inoculation could influence rice growth and rice grain As accumulation in plants grown in As-contaminated soils.

Results

The microalgal inoculation greatly enhanced nutrient uptake and rice growth. The presence of representative microalga Anabaena azotica did not significantly differ the grain inorganic As concentrations but remarkably decreased the rice root and grain DMA concentrations. The translocation of As from roots to grains was also markedly decreased by rice inoculated with A. azotica. This subsequently led to a decrease in the total As concentration in rice grains.

Conclusions

The results of the study indicate that the microalgal inoculation had a strong influence on soil pH, soil As speciation, and soil nutrient bioavailability, which significantly affected the rice growth, nutrient uptake, and As accumulation and translocation in rice plants. The results suggest that algae inoculation can be an effective strategy for improving nutrient uptake and reducing As translocation from roots to grains by rice grown in As-contaminated paddy soils.
  相似文献   

7.

Objectives

To improve the quality of diesel fuel via removal of aromatic compounds using Pseudomonas sp.

Results

In the present study Pseudomonas sp. was able to remove 94% of fluorene, 59% of phenanthrene, 49% of anthracene, 52% of fluoranthene, 45% of pyrene and 75% carbazole present in diesel oil. Additionally, it also does not affect the aliphatic content of fuel thus maintaining the carbon backbone of the fuel.

Conclusions

Pseudomonas sp. is a potential biocatalyst that can be used in the refining industry.
  相似文献   

8.

Background and Aims

It was previously demonstrated that stolons of Fragaria vesca respond to patches of varying nutrient quality; however, the mechanism of patch-detection remained unknown. Here we provide support for a process by which F. vesca perceives nutrient-rich patches, consistent with nutrient foraging prior to rooting.

Methods

Volatile organic compounds (VOCs) emitted from unsterilized and sterilized field substrates were collected and analyzed by stir-bar headspace extraction gas chromatography-mass spectrometry using a method modified for soil and litter systems. Selected compounds were chosen to represent unsterilized and sterilized field substrates. These synthetic volatile compound mixtures were then applied to neutral substrate to test the ability of F. vesca to choose between unsterilized versus sterilized substrates.

Results

Primary stolons exhibited chemotropism towards unsterilized (natural) substrates and grew away from the sterilized volatile substrates when the alternate choice was a negative control. We conclude that the presence of carboxylic acids tends to stimulate stolon elongation and chemotropism while aldehydes, ketones and monoterpenes tend to suppress it.

Conclusions

We provide evidence that developing stolons of F. vesca forage for nutrient-rich patches via volatile cues similar to those emitted from the soil through microflora activity.
  相似文献   

9.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

10.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

11.

Introduction

Raspberries are becoming increasingly popular due to their reported health beneficial properties. Despite the presence of only trace amounts of anthocyanins, yellow varieties seems to show similar or better effects in comparison to conventional raspberries.

Objectives

The aim of this work is to characterize the metabolic differences between red and yellow berries, focussing on the compounds showing a higher concentration in yellow varieties.

Methods

The metabolomic profile of 13 red and 12 yellow raspberries (of different varieties, locations and collection dates) was determined by UPLC–TOF-MS. A novel approach based on Pearson correlation on the extracted ion chromatograms was implemented to extract the pseudospectra of the most relevant biomarkers from high energy LC–MS runs. The raw data will be made publicly available on MetaboLights (MTBLS333).

Results

Among the metabolites showing higher concentration in yellow raspberries it was possible to identify a series of compounds showing a pseudospectrum similar to that of A-type procyanidin polymers. The annotation of this group of compounds was confirmed by specific MS/MS experiments and performing standard injections.

Conclusions

In berries lacking anthocyanins the polyphenol metabolism might be shifted to the formation of a novel class of A-type procyanidin polymers.
  相似文献   

12.

Aims

This study aimed to determine the capacity of Si to mitigate Al toxicity in upland rice plants (Oryza sativa L.) by evaluating plant growth and the Si and Al uptake kinetics.

Methods

Plants were grown for 40 days, after which the Si and Al uptake kinetics (Cmin, Km and Imax) were analyzed. Then, the shoots and roots were separated, and the dry matter, root morphology and Si and Al concentration and accumulation in the plant were evaluated.

Results

Aluminum decreased plant growth and the Si uptake capacity by decreasing the root growth and Si transport system efficiency in the upland rice roots (> Km and > Cmin). Silicon mitigated Al toxicity in the upland rice plants by decreasing Al transport to the plant shoots, although it did not reduce the Al uptake rate (Imax). Si treatment increased the growth of upland rice plant shoots grown in the presence of Al without influencing the root growth. The alleviation of Al toxicity by Si is more evident in the susceptible upland rice cultivar Maravilha.

Conclusions

Silicon mitigated Al toxicity in the upland rice plants by decreasing Al transport to the plant shoots but did not reduce the Al uptake rate by roots.
  相似文献   

13.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

14.

Background

In recent years the visualization of biomagnetic measurement data by so-called pseudo current density maps or Hosaka-Cohen (HC) transformations became popular.

Methods

The physical basis of these intuitive maps is clarified by means of analytically solvable problems.

Results

Examples in magnetocardiography, magnetoencephalography and magnetoneurography demonstrate the usefulness of this method.

Conclusion

Hardware realizations of the HC-transformation and some similar transformations are discussed which could advantageously support cross-platform comparability of biomagnetic measurements.
  相似文献   

15.

Introduction

Recent studies provide a convincing support that the presence of cancer cells in the body leads to the alteration of volatile organic compounds (VOCs) emanating from biological samples, particularly of those closely related with tumoral tissues. Thus, a great interest emerged for the study of cancer volatilome and subsequent attempts to confirm VOCs as potential diagnostic biomarkers.

Objectives

The aim of this study was to determine the volatile metabolomic signature of bladder cancer (BC) cell lines and provide an in vitro proof-of-principle that VOCs emanated into the extracellular medium may discriminate BC cells from normal bladder epithelial cells.

Methods

VOCs in the culture media of three BC cell lines (Scaber, J82, 5637) and one normal bladder cell line (SV-HUC-1) were extracted by headspace-solid phase microextraction and analysed by gas chromatography-mass spectrometry (HS-SPME/GC–MS). Two different pH (pH 2 and 7) were used for VOCs extraction to infer the best pH to be used in in vitro metabolomic studies.

Results

Multivariate analysis revealed a panel of volatile metabolites that discriminated cancerous from normal bladder cells, at both pHs, although a higher number of discriminative VOCs was obtained at neutral pH. Most of the altered metabolites were ketones and alkanes, which were generally increased in BC compared to normal cells, and alcohols, which were significantly decreased in BC cells. Among them, three metabolites, namely 2-pentadecanone, dodecanal and γ-dodecalactone (the latter only tentatively identified), stood out as particularly important metabolites and promising volatile biomarkers for BC detection. Furthermore, our results also showed the potential of VOCs in discriminating BC cell lines according to tumour grade and histological subtype.

Conclusions

We demonstrate that a GC–MS metabolomics-based approach for analysis of VOCs is a valuable strategy for identifying new and specific biomarkers that may improve BC diagnosis. Future studies should entail the validation of volatile signature found for BC cell lines in biofluids from BC patients.
  相似文献   

16.

Aims

The mechanisms underlying magnesium (Mg) uptake by plant roots remain to be fully elucidated. In particular, there is little information about the effects of Mg deficiency on Mg uptake activity. A Mg uptake kinetic study is essential for better understanding the Mg uptake system.

Methods

We performed a Mg uptake tracer experiment in rice plants using 28?Mg.

Results

Mg uptake was mediated by high- and low-affinity transport systems. The K m value of the high-affinity transport system was approximately 70 μM under Mg-deficient conditions. The Mg uptake activity was promoted by Mg deficiency, which in turn fell to the basal level after 5- min of Mg resupply. The induced uptake rate was inhibited by ionophore treatment, suggesting that an energy-dependent uptake system is enhanced by Mg deficiency.

Conclusions

The Mg uptake changes rapidly with Mg conditions in rice, as revealed by a 28?Mg tracer experiment. This technique is expected to be applicable for Mg uptake analyses, particularly in mutants or other lines.
  相似文献   

17.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

18.
Zhou  Yi  Coventry  David R.  Denton  Matthew D. 《Plant and Soil》2016,406(1-2):173-185

Aims

Bacterial ACC deaminase is one of the key tools to ameliorate plant stress by lowering ethylene level in plants. The effects of ACC deaminase-producing bacteria on the volatile profiles in plants have not been examined to date. To address this, we performed metabolic profiling of volatiles in carrots following inoculation of the bacteria producing ACC deaminase.

Methods

We isolated ACC deaminase-producing bacteria from the inner part of the fruits and vegetables grown on organic farms by culturing on ACC-containing media, and screened them with PCR for the acdS gene, mungbean growth assay, and in vitro ACC deaminase activity. The isolated endophytes were evaluated for their ability to alter volatile profiles in carrots.

Results

Eleven bacterial strains possessing the activity to cleave ACC were selected among the 60 isolates grown on the medium containing ACC as a sole N source. Three of them that belonged to Pseudomonas could reduce the levels of (E)-2-hexenal and the other green leaf volatiles (GLVs) and terpenoids in the carrot leaves following inoculation of the seeds.

Conclusions

The isolated endophytes with ACC deaminase activity could alter the composition of volatiles in plants, probably through lowering ethylene level in the plant.
  相似文献   

19.

Aim

Our objectives were to compare effects of root charge properties on Al adsorption by the roots of rice that differed in Al-tolerance, and to examine effects of different nitrogen forms on charge properties of rice roots and Al adsorption.

Methods

Streaming potential and chemical methods were used to measure root zeta potential and investigate Al chemical forms adsorbed on the roots of rice obtained from solution culture experiments.

Results

Rice roots of the Al-sensitive variety Yangdao-6 carried greater negative charge than the Al-tolerant variety Wuyunjing-7, which meant the roots of Yangdao-6 adsorbed more exchangeable and complexed Al. When both rice varieties were grown in NH4 +-containing nutrient solutions, there were less functional groups and lower negative surface charge on their roots, which reduced Al adsorption compared to the rice grown in NO3 ? containing nutrient solutions. The decline in nutrient solution pH due to NH4 + uptake by rice roots was responsible for the reduced numbers of functional groups and the lower negative surface charge on the roots compared to the rice grown in NO3 ? containing solutions.

Conclusions

Integrated root surface charge, as expressed by zeta potential, played an important role in Al adsorption by the roots of rice with different Al-tolerance.
  相似文献   

20.

Introduction

Quantification of tetrahydrofolates (THFs), important metabolites in the Wood–Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen.

Objective

To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors.

Methods

Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC–MS/MS was used for quantification.

Results

Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP.

Conclusion

Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号