首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Introduction

Current computational tools for gas chromatography—mass spectrometry (GC–MS) metabolomics profiling do not focus on metabolite identification, that still remains as the entire workflow bottleneck and it relies on manual data reviewing. Metabolomics advent has fostered the development of public metabolite repositories containing mass spectra and retention indices, two orthogonal properties needed for metabolite identification. Such libraries can be used for library-driven compound profiling of large datasets produced in metabolomics, a complementary approach to current GC–MS non-targeted data analysis solutions that can eventually help to assess metabolite identities more efficiently.

Results

This paper introduces Baitmet, an integrated open-source computational tool written in R enclosing a complete workflow to perform high-throughput library-driven GC–MS profiling in complex samples. Baitmet capabilities were assayed in a metabolomics study involving 182 human serum samples where a set of 61 metabolites were profiled given a reference library.

Conclusions

Baitmet allows high-throughput and wide scope interrogation on the metabolic composition of complex samples analyzed using GC–MS via freely available spectral data. Baitmet is freely available at http://CRAN.R-project.org/package=baitmet.
  相似文献   

3.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

4.

Introduction

Tandem mass spectrometry (MS/MS) has been widely used for identifying metabolites in many areas. However, computationally identifying metabolites from MS/MS data is challenging due to the unknown of fragmentation rules, which determine the precedence of chemical bond dissociation. Although this problem has been tackled by different ways, the lack of computational tools to flexibly represent adjacent structures of chemical bonds is still a long-term bottleneck for studying fragmentation rules.

Objectives

This study aimed to develop computational methods for investigating fragmentation rules by analyzing annotated MS/MS data.

Methods

We implemented a computational platform, MIDAS-G, for investigating fragmentation rules. MIDAS-G processes a metabolite as a simple graph and uses graph grammars to recognize specific chemical bonds and their adjacent structures. We can apply MIDAS-G to investigate fragmentation rules by adjusting bond weights in the scoring model of the metabolite identification tool and comparing metabolite identification performances.

Results

We used MIDAS-G to investigate four bond types on real annotated MS/MS data in experiments. The experimental results matched data collected from wet labs and literature. The effectiveness of MIDAS-G was confirmed.

Conclusion

We developed a computational platform for investigating fragmentation rules of tandem mass spectrometry. This platform is freely available for download.
  相似文献   

5.

Introduction

Metabolomics is a well-established tool in systems biology, especially in the top–down approach. Metabolomics experiments often results in discovery studies that provide intriguing biological hypotheses but rarely offer mechanistic explanation of such findings. In this light, the interpretation of metabolomics data can be boosted by deploying systems biology approaches.

Objectives

This review aims to provide an overview of systems biology approaches that are relevant to metabolomics and to discuss some successful applications of these methods.

Methods

We review the most recent applications of systems biology tools in the field of metabolomics, such as network inference and analysis, metabolic modelling and pathways analysis.

Results

We offer an ample overview of systems biology tools that can be applied to address metabolomics problems. The characteristics and application results of these tools are discussed also in a comparative manner.

Conclusions

Systems biology-enhanced analysis of metabolomics data can provide insights into the molecular mechanisms originating the observed metabolic profiles and enhance the scientific impact of metabolomics studies.
  相似文献   

6.

Introduction

Both reverse-phase and HILIC chemistries are deployed for liquid-chromatography mass spectrometry (LC–MS) metabolomics analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and versatility. Comprehensive metabolomics analysis is additionally complicated by the physiochemical diversity of metabolites and array of tunable analytical parameters.

Objective

Our aim was to rationally and efficiently design complementary HILIC-based polar metabolomics methods on multiple instruments using design of experiments (DoE).

Methods

We iteratively tuned LC and MS conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass spectrometers through multiple rounds of a workflow we term Comprehensive optimization of LC–MS metabolomics methods using design of experiments (COLMeD). Multivariate statistical analysis guided our decision process in the method optimizations.

Results

LC–MS/MS tuning for the QqQ method on serum metabolites yielded a median response increase of 161.5 % (p < 0.0001) over initial conditions with a 13.3 % increase in metabolite coverage. The COLMeD output was benchmarked against two widely used polar metabolomics methods, demonstrating total ion current increases of 105.8 and 57.3 %, with median metabolite response increases of 106.1 and 10.3 % (p < 0.0001 and p < 0.05 respectively). For our optimized qTOF method, 22 solvent systems were compared on a standard mix of physiochemically diverse metabolites, followed by COLMeD optimization, yielding a median 29.8 % response increase (p < 0.0001) over initial conditions.

Conclusions

The COLMeD process elucidated response tradeoffs, facilitating improved chromatography and MS response without compromising separation of isobars. COLMeD is efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-specific optimization as demonstrated through acylcarnitine optimization within the QqQ method.
  相似文献   

7.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

8.

Introduction

Although cultured cells are nowadays regularly analyzed by metabolomics technologies, some issues in study setup and data processing are still not resolved to complete satisfaction: a suitable harvesting method for adherent cells, a fast and robust method for data normalization, and the proof that metabolite levels can be normalized to cell number.

Objectives

We intended to develop a fast method for normalization of cell culture metabolomics samples, to analyze how metabolite levels correlate with cell numbers, and to elucidate the impact of the kind of harvesting on measured metabolite profiles.

Methods

We cultured four different human cell lines and used them to develop a fluorescence-based method for DNA quantification. Further, we assessed the correlation between metabolite levels and cell numbers and focused on the impact of the harvesting method (scraping or trypsinization) on the metabolite profile.

Results

We developed a fast, sensitive and robust fluorescence-based method for DNA quantification showing excellent linear correlation between fluorescence intensities and cell numbers for all cell lines. Furthermore, 82–97 % of the measured intracellular metabolites displayed linear correlation between metabolite concentrations and cell numbers. We observed differences in amino acids, biogenic amines, and lipid levels between trypsinized and scraped cells.

Conclusion

We offer a fast, robust, and validated normalization method for cell culture metabolomics samples and demonstrate the eligibility of the normalization of metabolomics data to the cell number. We show a cell line and metabolite-specific impact of the harvesting method on metabolite concentrations.
  相似文献   

9.

Introduction

The field of metabolomics has expanded greatly over the past two decades, both as an experimental science with applications in many areas, as well as in regards to data standards and bioinformatics software tools. The diversity of experimental designs and instrumental technologies used for metabolomics has led to the need for distinct data analysis methods and the development of many software tools.

Objectives

To compile a comprehensive list of the most widely used freely available software and tools that are used primarily in metabolomics.

Methods

The most widely used tools were selected for inclusion in the review by either ≥ 50 citations on Web of Science (as of 08/09/16) or the use of the tool being reported in the recent Metabolomics Society survey. Tools were then categorised by the type of instrumental data (i.e. LC–MS, GC–MS or NMR) and the functionality (i.e. pre- and post-processing, statistical analysis, workflow and other functions) they are designed for.

Results

A comprehensive list of the most used tools was compiled. Each tool is discussed within the context of its application domain and in relation to comparable tools of the same domain. An extended list including additional tools is available at https://github.com/RASpicer/MetabolomicsTools which is classified and searchable via a simple controlled vocabulary.

Conclusion

This review presents the most widely used tools for metabolomics analysis, categorised based on their main functionality. As future work, we suggest a direct comparison of tools’ abilities to perform specific data analysis tasks e.g. peak picking.
  相似文献   

10.

Introduction

Metabolomics has become a valuable tool in many research areas. However, generating metabolomics-based biochemical profiles without any related bioactivity is only of indirect value in understanding a biological process. Therefore, metabolomics research could greatly benefit from tools that directly determine the bioactivity of the detected compounds.

Objective

We aimed to combine LC–MS metabolomics with a cell based receptor assay. This combination could increase the understanding of biological processes and may provide novel opportunities for functional metabolomics.

Methods

We developed a flow through biosensor with human cells expressing both the TRPV1, a calcium ion channel which responds to capsaicin, and the fluorescent intracellular calcium ion reporter, YC3.6. We have analysed three contrasting Capsicum varieties. Two were selected with contrasting degrees of spiciness for characterization by HPLC coupled to high mass resolution MS. Subsequently, the biosensor was then used to link individual pepper compounds with TRPV1 activity.

Results

Among the compounds in the crude pepper fruit extracts, we confirmed capsaicin and also identified both nordihydrocapsaicin and dihydrocapsaicin as true agonists of the TRPV1 receptor. Furthermore, the biosensor was able to detect receptor activity in extracts of both Capsicum fruits as well as a commercial product. Sensitivity of the biosensor to this commercial product was similar to the sensory threshold of a human sensory panel.

Conclusion

Our results demonstrate that the TRPV1 biosensor is suitable for detecting bioactive metabolites. Novel opportunities may lie in the development of a continuous functional assay, where the biosensor is directly coupled to the LC–MS.
  相似文献   

11.
12.

Introduction

The metabolic alterations accompanying the development of insulin resistance and type 2 diabetes mellitus (T2DM) are complex, not coherently understood and only partially represented by conventional clinical tests like the oral glucose tolerance test. Changes in plasma metabolite concentrations preceding insulin resistance or overt T2DM may help understand the etiology of metabolic disorders and they are potential predictive risk markers.

Objectives

Here, we describe a non-targeted metabolomics platform based on UPLC-UHR-QToF-MS(/MS) for the assessment of plasma non-polar metabolites.

Methods

This method was applied to a longitudinal mouse obesity study comparing mice on control and high fat diet (HFD), respectively. Plasma metabolites were assessed 2, 4, 8 and 16 weeks after initiation of feeding. Multivariate analysis of the metabolite dataset showed clear differentiation of the feeding groups after 8 weeks when the HFD-fed mice exhibited clear signs of insulin resistance.

Results

The discrimination of the groups was due to changes in various metabolic pathways including, among others, glycerophospholipid, sphingolipid and cholesterol metabolism.

Conclusion

From 81 compounds with a p-value lower than 0.05, a total of 19 metabolites could be putatively identified due to their accurate mass, isotope and fragmentation pattern. Thirteen of these observed metabolites are known key metabolites to diabetes or its secondary diseases like diabetic nephropathy and neuropathy (Meiss, Werner, John, Scheja, Herbach, Heeren, Fischer 2015). The compounds putatively identified here may provide valuable starting points for further investigations and developments of clinical diagnostics and prediagnostics for T2DM and related diseases.
  相似文献   

13.

Introduction

Experiments in metabolomics rely on the identification and quantification of metabolites in complex biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool dealing with unknown metabolic features.

Objectives

In this article we propose a method, named ASICS, based on a strong statistical theory that handles automatically the metabolites identification and quantification in proton NMR spectra.

Methods

A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite spectra. This model can handle local or global chemical shift variations due to experimental conditions using a warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex spectrum. This estimator shows good statistical properties and handles peak overlapping issues.

Results

The performances of the method were investigated on known mixtures (such as synthetic urine) and on plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing methods.

Conclusion

ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping experts to obtain metabolic profiles.
  相似文献   

14.

Introduction

Availability of large cohorts of samples with related metadata provides scientists with extensive material for studies. At the same time, recent development of modern high-throughput ‘omics’ technologies, including metabolomics, has resulted in the potential for analysis of large sample sizes. Representative subset selection becomes critical for selection of samples from bigger cohorts and their division into analytical batches. This especially holds true when relative quantification of compound levels is used.

Objectives

We present a multivariate strategy for representative sample selection and integration of results from multi-batch experiments in metabolomics.

Methods

Multivariate characterization was applied for design of experiment based sample selection and subsequent subdivision into four analytical batches which were analyzed on different days by metabolomics profiling using gas-chromatography time-of-flight mass spectrometry (GC–TOF–MS). For each batch OPLS-DA® was used and its p(corr) vectors were averaged to obtain combined metabolic profile. Jackknifed standard errors were used to calculate confidence intervals for each metabolite in the average p(corr) profile.

Results

A combined, representative metabolic profile describing differences between systemic lupus erythematosus (SLE) patients and controls was obtained and used for elucidation of metabolic pathways that could be disturbed in SLE.

Conclusion

Design of experiment based representative sample selection ensured diversity and minimized bias that could be introduced at this step. Combined metabolic profile enabled unified analysis and interpretation.
  相似文献   

15.

Background

The latest version of the Human Metabolome Database (v4.0) lists 114,100 individual entries. Typically, however, metabolomics studies identify only around 100 compounds and many features identified in mass spectra are listed only as ‘unknown compounds’. The lack of ability to detect all metabolites present, and fully identify all metabolites detected (the dark metabolome) means that, despite the great contribution of metabolomics to a range of areas in the last decade, a significant amount of useful information from publically funded studies is being lost or unused each year. This loss of data limits our potential gain in knowledge and understanding of important research areas such as cell biology, environmental pollution, plant science, food chemistry and health and biomedical research. Metabolomics therefore needs to develop new tools and methods for metabolite identification to advance as a field.

Aim of review

In this critical review, some potential issues with metabolite identification are identified and discussed. New and novel emerging technologies and tools which may contribute to expanding the number of compounds identified in metabolomics studies (thus illuminating the dark metabolome) are reviewed. The aim is to stimulate debate and research in the molecular characterisation of biological systems to drive forward metabolomic research.

Key scientific concepts of review

The work specifically discusses dynamic nuclear polarisation nuclear magnetic resonance spectroscopy (DNP-NMR), non-proton NMR active nuclei, two-dimensional liquid chromatography (2DLC) and Raman spectroscopy (RS). It is suggested that developing new methods for metabolomics with these techniques could lead to advances in the field and better characterisation of biological systems.
  相似文献   

16.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

17.

Introduction

Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction.

Objectives

We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ? p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput.

Methods

We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility.

Results

We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma.

Conclusion

We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays.
  相似文献   

18.

Introduction

Subcellular compartmentalization enables eukaryotic cells to carry out different reactions at the same time, resulting in different metabolite pools in the subcellular compartments. Thus, mutations affecting the mitochondrial energy metabolism could cause different metabolic alterations in mitochondria compared to the cytoplasm. Given that the metabolite pool in the cytosol is larger than that of other subcellular compartments, metabolic profiling of total cells could miss these compartment-specific metabolic alterations.

Objectives

To reveal compartment-specific metabolic differences, mitochondria and the cytoplasmic fraction of baker’s yeast Saccharomyces cerevisiae were isolated and subjected to metabolic profiling.

Methods

Mitochondria were isolated through differential centrifugation and were analyzed together with the remaining cytoplasm by gas chromatography–mass spectrometry (GC–MS) based metabolic profiling.

Results

Seventy-two metabolites were identified, of which eight were found exclusively in mitochondria and sixteen exclusively in the cytoplasm. Based on the metabolic signature of mitochondria and of the cytoplasm, mutants of the succinate dehydrogenase (respiratory chain complex II) and of the FOF1-ATP-synthase (complex V) can be discriminated in both compartments by principal component analysis from wild-type and each other. These mitochondrial oxidative phosphorylation machinery mutants altered not only citric acid cycle related metabolites but also amino acids, fatty acids, purine and pyrimidine intermediates and others.

Conclusion

By applying metabolomics to isolated mitochondria and the corresponding cytoplasm, compartment-specific metabolic signatures can be identified. This subcellular metabolomics analysis is a powerful tool to study the molecular mechanism of compartment-specific metabolic homeostasis in response to mutations affecting the mitochondrial metabolism.
  相似文献   

19.

Introduction

Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection has proven essential to extend survival. Genomic and proteomic advances have provided impetus to the effort dedicated to detect and diagnose the disease at an earlier stage. Recently, the study of metabolites associated with tumor formation and progression has inaugurated the era of cancer metabolomics to aid in this effort.

Objectives

This review summarizes recent work regarding novel metabolites with the potential to serve as biomarkers for early lung tumor detection, evaluation of disease progression, and prediction of patient outcomes.

Method

We compare the metabolite profiling of cancer patients with that of healthy individuals, and the metabolites identified in tissue and biofluid samples and their usefulness as lung cancer biomarkers. We discuss metabolite alterations in tumor versus paired non-tumor lung tissues, as well as metabolite alterations in different stages of lung cancers and their usefulness as indicators of disease progression and overall survival. We evaluate metabolite dysregulation in different types of lung cancers, and those associated with lung cancer versus other lung diseases. We also examine metabolite differences between lung cancer patients and smokers/risk-factor individuals.

Result

Although an extensive list of metabolites has been evaluated to distinguish between these cases, refinement of methods is further required for adequate patient diagnosis and treatment.

Conclusion

We conclude that with technological advancement, metabolomics may be able to replace more invasive and costly diagnostic procedures while also providing the means to more effectively tailor treatment to patient-specific tumors.
  相似文献   

20.

Background

Inflammatory bowel disease is a group of pathologies characterised by chronic inflammation of the intestine and an unclear aetiology. Its main manifestations are Crohn’s disease and ulcerative colitis. Currently, biopsies are the most used diagnostic tests for these diseases and metabolomics could represent a less invasive approach to identify biomarkers of disease presence and progression.

Objectives

The lipid and the polar metabolite profile of plasma samples of patients affected by inflammatory bowel disease have been compared with healthy individuals with the aim to find their metabolomic differences. Also, a selected sub-set of samples was analysed following solid phase extraction to further characterise differences between pathological samples.

Methods

A total of 200 plasma samples were analysed using drift tube ion mobility coupled with time of flight mass spectrometry and liquid chromatography for the lipid metabolite profile analysis, while liquid chromatography coupled with triple quadrupole mass spectrometry was used for the polar metabolite profile analysis.

Results

Variations in the lipid profile between inflammatory bowel disease and healthy individuals were highlighted. Phosphatidylcholines, lyso-phosphatidylcholines and fatty acids were significantly changed among pathological samples suggesting changes in phospholipase A2 and arachidonic acid metabolic pathways. Variations in the levels of cholesteryl esters and glycerophospholipids were also found. Furthermore, a decrease in amino acids levels suggests mucosal damage in inflammatory bowel disease.

Conclusions

Given good statistical results and predictive power of the model produced in our study, metabolomics can be considered as a valid tool to investigate inflammatory bowel disease.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号