首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F ST-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F ST-outlier methods detected together 11 F ST-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F ST-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an integrative approach combining different outlier detection methods and population sampling at different geographic scales is useful to identify loci potentially involved in adaptation.  相似文献   

2.
Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high‐ and low‐elevation plots on four different mountains situated along a 170‐km east–west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east–west isolation by distance among mountain sites. FST outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using FST outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. QSTFST tests for fitness‐related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east‐to‐west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.  相似文献   

3.
Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool‐Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST‐based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo‐climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo‐climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.  相似文献   

4.
Predicted increases in drought and heat stress will likely induce shifts in species bioclimatic envelopes. Genetic variants adapted to water limitation may prove pivotal for species response under scenarios of increasing drought. In this study, we aimed to explore this hypothesis by investigating genetic variation in 16 populations of black spruce (Picea mariana) in relation to climate variables in Alaska. A total of 520 single nucleotide polymorphisms (SNPs) were genotyped for 158 trees sampled from areas of contrasting climate regimes. We used multivariate and univariate genotype‐by‐environment approaches along with available gene annotations to investigate the relationship between climate and genetic variation among sampled populations. Nine SNPs were identified as having a significant association with climate, of which five were related to drought stress response. Outlier SNPs with respect to the overall environment were significantly overrepresented for several biological functions relevant for coping with variable hydric regimes, including osmotic stress response. This genomic imprint is consistent with local adaptation of black spruce to drought stress. These results suggest that natural selection acting on standing variation prompts local adaptation in forest stands facing water limitation. Improved understanding of possible adaptive responses could inform our projections about future forest dynamics and help prioritize populations that harbor valuable genetic diversity for conservation.  相似文献   

5.
Understanding whether populations can adapt in situ or whether interventions are required is of key importance for biodiversity management under climate change. Landscape genomics is becoming an increasingly important and powerful tool for rapid assessments of climate adaptation, especially in long‐lived species such as trees. We investigated climate adaptation in Eucalyptus microcarpa using the DArTseq genomic approach. A combination of FST outlier and environmental association analyses were performed using >4200 genomewide single nucleotide polymorphisms (SNPs) from 26 populations spanning climate gradients in southeastern Australia. Eighty‐one SNPs were identified as putatively adaptive, based on significance in FST outlier tests and significant associations with one or more climate variables related to temperature (70/81), aridity (37/81) or precipitation (35/81). Adaptive SNPs were located on all 11 chromosomes, with no particular region associated with individual climate variables. Climate adaptation appeared to be characterized by subtle shifts in allele frequencies, with no consistent fixed differences identified. Based on these associations, we predict adaptation under projected changes in climate will include a suite of shifts in allele frequencies. Whether this can occur sufficiently rapidly through natural selection within populations, or would benefit from assisted gene migration, requires further evaluation. In some populations, the absence or predicted increases to near fixation of particular adaptive alleles hint at potential limits to adaptive capacity. Together, these results reinforce the importance of standing genetic variation at the geographic level for maintaining species’ evolutionary potential.  相似文献   

6.
One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human‐induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human‐induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate‐related SNPs (= 7) showed the strongest signals in the oldest cohort, while pollution‐related SNPs (= 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses.  相似文献   

7.
Understanding the environmental parameters that drive adaptation among populations is important in predicting how species may respond to global climatic changes and how gene pools might be managed to conserve adaptive genetic diversity. Here, we used Bayesian FST outlier tests and allele–climate association analyses to reveal two Eucalyptus EST‐SSR loci as strong candidates for diversifying selection in natural populations of a southwestern Australian forest tree, Eucalyptus gomphocephala (Myrtaceae). The Eucalyptus homolog of a CONSTANS‐like gene was an FST outlier, and allelic variation showed significant latitudinal clinal associations with annual and winter solar radiation, potential evaporation, summer precipitation and aridity. A second FST outlier locus, homologous to quinone oxidoreductase, was significantly associated with measures of temperature range, high summer temperature and summer solar radiation, with important implications for predicting the effect of temperature on natural populations in the context of climate change. We complemented these data with investigations into neutral population genetic structure and diversity throughout the species range. This study provides an investigation into selection signatures at gene‐homologous EST‐SSRs in natural Eucalyptus populations, and contributes to our understanding of the relationship between climate and adaptive genetic variation, informing the conservation of both putatively neutral and adaptive components of genetic diversity.  相似文献   

8.
Harsh environment at high altitude may affect the mating system of plant species, especially those with wide ecological amplitude. Smaller effective neighbourhood size, less pollen and seed production, higher rate of inbreeding and a shift towards vegetative propagation may be involved. These changes can be reflected in spatial genetic structure (SGS). Populations of Norway spruce [Picea abies (L.) Karst.] were analysed along an altitudinal cline to verify whether SGS increases with altitude. Three putatively autochthonous populations in Tyrol (Austria) at 800, 1,200 and 1,600?m above sea level (asl) were studied. Six highly polymorphic DNA markers (expressed sequence tag?Cderived simple sequence repeats, EST-SSRs) were used to genotype a total of 450 contiguous trees (150 trees per population). Loiselle??s kinship coefficient was used to quantify SGS. Against expectation no significant SGS was found in any of the populations, indicating a random spatial pattern. Significant SGS was observed when all populations were treated as a single one conforming to an isolation-by-distance pattern. Nearly identical allelic frequencies were found resulting in very small population differentiation (F ST?=?0.002). The fixation index decreased with diameter at breast height (a proxy for age) indicating natural selection against inbred trees. The results of this study indicate that seed and pollen dispersal mechanisms in Norway spruce are strongly counteracting spatial aggregation of similar genotypes even at high elevations.  相似文献   

9.
Populations residing near species' low‐latitude range margins (LLMs) often occur in warmer and drier environments than those in the core range. Thus, their genetic composition could be shaped by climatic drivers that differ from those occurring at higher latitudes, resulting in potentially adaptive variants of conservation value. Such variants could facilitate the adaptation of populations from other portions of the geographical range to similar future conditions anticipated under ongoing climate change. However, very few studies have assessed standing genetic variation at potentially adaptive loci in natural LLM populations. We investigated standing genetic variation at single nucleotide polymorphisms (SNPs) located within 117 candidate genes and its links to putative climatic selection pressures across 19 pedunculate oak (Quercus robur L.) populations distributed along a regional climatic gradient near the species' southern range margin in southeastern Europe. These populations are restricted to floodplain forests along large lowland rivers, whose hydric regime is undergoing significant shifts under modern rapid climate change. The populations showed very weak geographical structure, suggesting extensive genetic connectivity and gene flow or shared ancestry. We identified eight (6.2%) positive FST‐outlier loci, and genotype–environment association analyses revealed consistent associations between SNP allele frequencies and several climatic variables linked to water availability. A total of 61 associations involving 37 SNPs (28.5%) from 35 annotated genes provided important insights into putative functional mechanisms in our system. Our findings provide empirical support for the role of LLM populations as sources of potentially adaptive variation that could enhance species’ resilience to climate change‐related pressures.  相似文献   

10.
Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an opportunity to test whether census number is a good predictor of genetic diversity. Mean expected heterozygosity, He, based on 24 loci in 16 enzyme systems, was 0.093 for 10 sampled populations, which is within the range reported for conifers. However, estimates varied more than twofold among populations and He was closely related to the logarithm of the number of mature trees in the population (rHe,N = 0.93). Diversity among populations, FST, was 24.8% of the total diversity, which is higher than that observed in almost all conifer species studied. Nei's genetic distance, D, was not related to geographic distance between populations, and D? was 0.033, which is higher than estimates for most wide-ranging species. Most populations had excess homozygosity and the fixation index, FIS, was higher than that reported for all but one species of conifer. Nm, the number of migrants per generation, was 0.43 to 0.76, depending on estimation procedure, and is the smallest observed in conifers. The data suggest that populations of Chihuahua spruce have differentiated by drift and that they are effectively isolated. The results illustrate how a combination of paleontological observation and molecular markers can be used to illuminate recent evolutionary events. Multilocus estimates of outcrossing for two small populations were zero (complete selfing) and 0.153, respectively, which are in striking contrast to the near complete outcrossing observed in most conifers. The high fixation index and a high proportion of empty seeds (45%) suggest that inbreeding may be a serious problem for conservation of Chihuahua spruce.  相似文献   

11.
In a context of climate change and forest decline, a better understanding of the sources of tree flexibility involved in phenotypic plasticity and adaptation is needed. These last years, the role of epigenetics in the response to environmental variations has been established in several model plants at the genotype level but little is known at the level of natural populations grown in pedoclimatic sites. Here, we focused on three French natural populations of black poplar, a key pioneer tree from watersheds, planted in common garden and subjected to controlled variations of water availability. We estimated common genetic parameters such as narrow-sense heritability (h2), phenotypic differentiation index (PST), and the overall genetic differentiation index (FST) from genome-wide SNPs to evaluate the extent of epigenetic variations. Indeed, global DNA methylation levels from individuals exposed to drought or irrigated in a common garden were used. We found that the three populations were not distinguished by their levels of DNA methylation. However, a moderate drought was associated to a significant decrease in DNA methylation in the populations. Narrow-sense heritability and PST estimates of DNA methylation were similar to those found for biomass productivity. Heritability and PST were higher when trees were subjected to drought than in control condition. Negative genetic correlations between global DNA methylation and height or biomass were detected in drought condition only. Altogether, our data highlight that global DNA methylation acts as a genetic marker of natural population differentiation under drought stress in a pedoclimatic context.  相似文献   

12.
Insights into the relative contributions of locus specific and genome-wide effects on population genetic diversity can be gained through separation of their resulting genetic signals. Here we explore patterns of adaptive and neutral genetic diversity in the disjunct natural populations of Pinus radiata (D. Don) from mainland California. A first-generation common garden of 447 individuals revealed significant differentiation of wood phenotypes among populations (P ST), possibly reflecting local adaptation in response to environment. We subsequently screened all trees for genetic diversity at 149 candidate gene single nucleotide polymorphism (SNP) loci for signatures of adaptation. Ten loci were identified as being possible targets of diversifying selection following F ST outlier tests. Multivariate canonical correlation performed on a data set of 444 individuals identified significant covariance between environment, adaptive phenotypes and outlier SNP diversity, lending support to the case for local adaptation suggested from F ST and P ST tests. Covariation among discrete sets of outlier SNPs and adaptive phenotypes (inferred from multivariate loadings) with environment are supported by existing studies of candidate gene function and genotype–phenotype association. Canonical analyses failed to detect significant correlations between environment and 139 non-outlier SNP loci, which were applied to estimate neutral patterns of genetic differentiation among populations (F ST 4.3 %). Using this data set, significant hierarchical structure was detected, indicating three populations on the mainland. The hierarchical relationships based on neutral SNP markers (and SSR) were in contrast with those inferred from putatively adaptive loci, potentially highlighting the independent action of selection and demography in shaping genetic structure in this species.  相似文献   

13.
The European black poplar (Populus nigra L.) is an ecologically and economically important tree species for Turkey. The important and major genetic resources of species for future breeding and ex situ conservation purposes have been archived in a clone bank in Ankara by selecting clones from natural populations and old plantations throughout Turkey. There is no study to date assessing genetic composition these materials. Two-hundred-thirty-three P. nigra clones from six geographic region of Turkey (clone collection populations), and 32 trees from two natural populations (Tunceli and Melet) were genotyped by using 12 nuclear microsatellite DNA markers. There were nine clones which duplicated in various frequencies. The analysis carried out with removal of the duplicated clones revealed a moderately high genetic diversity in studied populations. The observed heterozygosities ranged from 0.59 in Tunceli natural to 0.69 in Central Anatolia clone collection populations. In general, there was excess of heterozygosity in the studied populations. Populations composed of clone collections were significantly differentiated from natural populations (F ST = 0.17), while there was little differentiation among those populations in the clone collection (F ST = 0.03). Two distantly located natural populations with small sizes also differed from each other (F ST = 0.17). Genetic structure analysis revealed two distinct groups (clone collection vs natural populations) with very high membership values (>92%). Clone collection populations had high level of admixture while natural populations had homogenous genetic structure. The presence of large number of clonal duplication, reduced genetic differentiation, and high level of admixture in clone collection populations indicate that genetic resources of European black poplar were highly degraded through genetic erosion and pollution caused by intensive cultural practices and extensive dispersal of clonal materials. To understand genetic diversity and its structural pattern thoroughly in the six clone collection populations, a further study with extensive and systematic sampling of European black poplar populations in major river ecosystems in Turkey will be useful.  相似文献   

14.
The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool‐Seq data and population genetic modelling. Common‐garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.  相似文献   

15.
Both genetic drift and divergent selection are predicted to be drivers of population differentiation across patchy habitats, but the extent to which these forces act on natural populations to shape traits is strongly affected by species’ ecological features. In this study, we infer the genomic structure of Pitcairnia lanuginosa, a widespread herbaceous perennial plant with a patchy distribution. We sampled populations in the Brazilian Cerrado and the Central Andean Yungas and discovered and genotyped SNP markers using double-digest restriction-site associated DNA sequencing. In addition, we analyzed ecophysiological traits obtained from a common garden experiment and compared patterns of phenotypic and genetic divergence (PSTFST comparisons) in a subset of populations from the Cerrado. Our results from molecular analyses pointed to extremely low genetic diversity and a remarkable population differentiation, supporting a major role of genetic drift. Approximately 0.3% of genotyped SNPs were flagged as differentiation outliers by at least two distinct methods, and Bayesian generalized linear mixed models revealed a signature of isolation by environment in addition to isolation by distance for high-differentiation outlier SNPs among the Cerrado populations. PSTFST comparisons suggested divergent selection on two ecophysiological traits linked to drought tolerance. We showed that these traits vary among populations, although without any particular macro-spatial pattern, suggesting local adaptation to differences in micro-habitats. Our study shows that selection might be a relevant force, particularly for traits involved in drought stress, even for populations experiencing strong drift, which improves our knowledge on eco-evolutionary processes acting on non-continuously distributed species.Subject terms: Population genetics, Speciation  相似文献   

16.
The genetic diversity, subdivision, and differentiation of nine populations of Norway spruce (Picea abies (L.) Karst.) in Ukrainian Carpathians were studied using electrophoretic analysis of variability of enzyme systems in 346 trees aged from 80 to 150 years. Based on electrophoretic fractionation of enzymes extracted from seed endosperms in vertical slabs of 7.5% polyacrylamide gel, 20 loci of nine enzyme systems (ADH, ACP, DIA, GDH, GOT, MDH, LAP, FDH, SOD) were identified, and 71 allele variant were revealed. Each tree was heterozygous on average in 15.8% of its genes. The populations were characterized by low subdivision (F ST = 0.017) and differentiation (D N = 0.005). The main contribution to heterogeneity of population genetic structure was made by loci Dia-3, Lap-1, and Sod-3. Clustering and multivariate analysis revealed no observed trends in geographical or altitudinal position of the populations.  相似文献   

17.
Climate is one of the most important drivers of local adaptation in forest tree species. Standing levels of genetic diversity and structure within and among natural populations of forest trees are determined by the interplay between climatic heterogeneity and the balance between selection and gene flow. To investigate this interplay, single nucleotide polymorphisms (SNPs) were genotyped in 24 to 37 populations from four subalpine conifers, Abies alba Mill., Larix decidua Mill., Pinus cembra L. and Pinus mugo Turra, across their natural ranges in the Italian Alps and Apennines. Patterns of population structure were apparent using a Bayesian clustering program, STRUCTURE, which identified three to five genetic groups per species. Geographical correlates with these patterns, however, were only apparent for P. cembra. Multivariate environmental variables [i.e. principal components (PCs)] were subsequently tested for association with SNPs using a Bayesian generalized linear mixed model. The majority of the SNPs, ranging from six in L. decidua to 18 in P. mugo, were associated with PC1, corresponding to winter precipitation and seasonal minimum temperature. In A. alba, four SNPs were associated with PC2, corresponding to the seasonal minimum temperature. Functional annotation of those genes with the orthologs in Arabidopsis revealed several genes involved in abiotic stress response. This study provides a detailed assessment of population structure and its association with environment and geography in four coniferous species in the Italian mountains.  相似文献   

18.
In this study we investigated the within- and between-population genetic variation using microsatellite markers and quantitative traits of the shea tree, Vitellaria paradoxa, an important agroforestry tree species of the Sudano–Sahelian region in Africa. Eleven populations were sampled across Mali and in northern Côte d’Ivoire. Leaf size and form and growth traits were measured in a progeny test at the nursery stage. Eight microsatellites were used to assess neutral genetic variation. Low levels of heterozygosity were recorded (1.6–3.0 alleles/locus; HE = 0.25–0.42) and the fixation index (FIS = −0.227–0.186) was not significantly different from zero suggesting that Hardy–Weinberg equilibrium is encountered in all populations sampled. Quantitative traits exhibited a strong genetic variation between populations and between families within populations. The degree of population differentiation of the quantitative traits (QST = 0.055–0.283, QSTmean = 0.189) strongly exceeds that in eight microsatellite loci (FST = −0.011–0.142, FSTmean = 0.047). Global and pairwise FST values were very low and not significantly different from zero suggesting agroforestry practices are amplifying gene flow (Nm = 5.07). The population means for quantitative traits and the rainfall variable were not correlated, showing variation was not linked with this climatic cline. It is suggested that this marked differentiation for quantitative traits, independent of environmental clines and despite a high gene flow, is a result of local adaptation and human selection of shea trees. This process has induced high linkage disequilibrium between underlying loci of polygenic characters.  相似文献   

19.
Knowing how microevolutionary processes, such as genetic drift and natural selection, shape variation in adaptive traits is strategic for conservation measures. One way to estimate local adaptation is to compare divergences in quantitative traits (QST) and neutral loci (FST). Therefore, we have assessed the pattern of phenotypic and molecular genetic divergence among natural subpopulations of the fruit tree Eugenia dysenterica DC. A provenance and progeny test was performed to assess the quantitative traits of the subpopulations collected in a wide distribution area of the species in the Brazilian Cerrado. The sampled environments are in a biodiversity hotspot with heterogeneous soil and climate conditions. By associating quantitative trait variation in initial seedling development with neutral microsatellite marker variation, we tested the local adaptation of the traits by the QSTFST contrast. Genetic drift was prevalent in the phenotypic differentiation among the subpopulations, although the traits seedling emergence time and root green mass, which are relevant for adaptation to the Cerrado climate, showed signs of uniform selection. Our results suggest that E. dysenterica has a spatial genetic structure divided into two large groups, separated by a line that divides the Cerrado biome in a southwestern to northeastern direction. This structure must be taken into account for managing E. dysenterica genetic resources both for conservation and breeding purposes.  相似文献   

20.
The impact of directional selection on specific trait types in plant species, and how a species’ life history mediates this response to selection remains understudied. Discovering such interactions is however crucial for understanding the interplay between ecological and genetic processes underlying local adaptation in plants, and to evaluate a species’ evolutionary potential with respect to changing environments. Furthermore, it remains unclear whether the degree of adaptive differentiation generally increases with the geographical distance between plant populations. Here, we present a weighted mixed model based meta-analysis aimed at unraveling the potential interactions between plant trait types, life history characteristics and QST–FST comparisons, and assessing the effect of geographical scale on population differentiation. Based on 51 studies we found that QST values exceeded their corresponding FST values in 71.74 % out of 401 cases. Furthermore, different trait types were found to be differently susceptible to natural selection and the magnitude of QST–FST comparisons was mediated by a plant species’ life span. These findings may be closely related to the genetic architectures of trait types and life histories, with the proportion of large-effect genes likely shaping the response to natural selection. QST–FST values also increased with increasing distance between populations, pinpointing the combined effects of environmental differentiation and isolation by distance on the magnitude of population divergence. Finally, our model showed an inverse relationship between FST and QST–FST values, presumably resulting from isolation by distance, the exchange of advantageous alleles, or genetic correlations among traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号