首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pentadesma butyracea Sabine, a rain forest food tree species, plays a vital role in the socio-economic livelihood of some West African rural communities due to its various products. However, its scattered populations are threatened in Benin. Defining appropriate conservation strategies requires a good knowledge of mating patterns and their consequences for population genetics. The outcrossing rate, levels of correlated paternity and fine-scale spatial genetic structure of adults and maternal sibships were estimated for one small population and three large populations in Benin using microsatellite markers. Similar outcrossing rates (88–95%) were found in all populations, showing that P. butyracea is mainly an outbreeding species. We found no evidence of inbreeding depression from a decay of inbreeding with age. The spatial genetic structure within the large populations (Sp statistic?=?0.003–0.038) was consistent with isolation-by-distance expectations, showing that gene dispersal is spatially limited. Limited pollen dispersal is highlighted by the decay of the degree of correlated paternity between sibships with spatial distance. The mean pollen dispersal distance was estimated between 50 m and 450 m, but up to 21% pollen may migrate from external sources. The smallest population displayed slightly higher correlated paternity than the large populations (r p ?=?0.37 vs. r p ?=?0.17–0.30). In conclusion, our results suggest that small populations may show a reduction in sire numbers in seed, while the fragmented populations, large and small, are connected through gene flow. There is little inbreeding and no evidence of inbreeding depression.  相似文献   

2.
The fine-scale spatial genetic structure (FSGS) of plant populations is strongly influenced by patterns of seed dispersal. An extreme case of limited dispersal is found in the charismatic yet endangered palm Lodoicea maldivica, which produces large fruits (up to 20 kg) dispersed only by gravity. To investigate patterns of seed dispersal and FSGS in natural populations we sampled 1252 individual adults and regenerating offspring across the species’ natural range in the Seychelles archipelago, and characterised their genotypes at 12 microsatellite loci. The average dispersal distance was 8.7?±?0.7 m. Topography had a significant effect on seed dispersal, with plants on steep slopes exhibiting the longest distances. FSGS was intense, especially in younger cohorts. Contrary to what might be expected in a dioecious species, we found high levels of inbreeding, with most neighbouring pairs of male and female trees (≤10 m) being closely related. Nonetheless, levels of genetic diversity were relatively high and similar in the various sampling areas, although these differed in disturbance and habitat fragmentation. We discuss potential trade-offs associated with maternal resource provisioning of progeny, seed dispersal and inbreeding, and consider the implications of our findings for managing this globally significant flagship species.  相似文献   

3.
An understanding of the mean and maximum dispersal distances of target species and subsequent scaling of management efforts to dispersal distance can be key in slowing, containing, or eradicating invasive species. However, dispersal distance is often difficult to measure. Patterns of genetic relatedness can be interpreted to understand realized genetic dispersal distances, which can then be applied to management. We analyzed patterns of microsatellite relatedness using Mantel correlograms and used them to estimate realized dispersal distance for the invasive wetland grass, Phragmites australis. We found that genetic relatedness declined quickly with increasing distance, decreasing to the level of the mean subestuary genetic relatedness by 100 m and to nearly zero by 500 m. We interpret this to indicate that most dispersal is <100 m and very little dispersal extends beyond 500 m. This suggests that management of P. australis may need to consider dispersal from stands up to 500 m from an area that is being managed, perhaps at the scale of whole subestuaries. Results of this study demonstrate that analysis of dispersal patterns can be used to develop landscape-scale approaches to the management of invasive species.  相似文献   

4.
Knowledge of larval dispersal and connectivity in coral reef species is crucial for understanding population dynamics, resilience, and evolution of species. Here, we use ten microsatellites and one mitochondrial marker (cytochrome b) to investigate the genetic population structure, genetic diversity, and historical demography of the powder-blue tang Acanthurus leucosternon across more than 1000 km of the scarcely studied Eastern African region. The global AMOVA results based on microsatellites reveal a low but significant F ST value (F ST = 0.00252 P < 0.001; D EST = 0.025 P = 0.0018) for the 336 specimens sampled at ten sample sites, while no significant differentiation could be found in the mitochondrial cytochrome b dataset. On the other hand, pairwise F ST, PCOA, and hierarchical analysis failed to identify any genetic breaks among the Eastern African populations, supporting the hypothesis of genetic homogeneity. The observed genetic homogeneity among Eastern African sample sites can be explained by the lengthy post-larval stage of A. leucosternon, which can potentiate long-distance dispersal. Tests of neutrality and mismatch distribution signal a population expansion during the mid-Pleistocene period.  相似文献   

5.
The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064–0.116 (all P = 0.001), pairwise G′′ST = 0.107–0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.  相似文献   

6.
Understanding patterns of genetic diversity at the landscape scale will enhance conservation and management of natural populations. Here we analyzed the genetic diversity, population connectivity, and spatial genetic structure among subpopulations and age groups of Olea europaea subsp. cuspidata, a cornerstone species of the Afromontane highlands. The study was conducted at the landscape level within a radius of approximately 4 km, as well as on a fine scale (intensive study plot) of less than 300 m radius. In total 542 samples from four natural subpopulations in northwestern Ethiopia were analyzed using ten nuclear microsatellite markers. Inbreeding was higher in smaller populations. No genetic difference was detected among cohorts of different tree sizes in the intensive studied plot. Average population differentiation was low but significant (F ST ?=?0.016). Landscape genetic analysis inferred two groups: the most distant subpopulation WE located less than 4 kms from the other three subpopulations formed a separate group. Sixty-four percent of the total migrants were shared among the three latter subpopulations, which are spatially clustered. Immigrants were non-randomly distributed inside of the intensive study plot. Significant spatial genetic structure (SGS) was found both at the landscape scale and in the intensive study plot, and adults showed stronger SGS than young trees. An indirect estimate of 220 m as mean gene dispersal distance was obtained. We conclude that even under fragmentation migration is not disrupted in wild olive trees and that large protected populations at church forests are very important to conserve genetic resources. However, the higher level of inbreeding and evidence for population bottlenecks in the small populations, as well as the persisting heavy pressure on most remaining populations, warrants quick action to maintain genetic diversity of wild olive in the Ethiopian highlands.  相似文献   

7.
Amplified fragment length polymorphism (AFLP) fingerprinting and three different plastidic DNA regions (rpl16, rps16, atpF-atpH) were used to investigate species identity in the genus Wolffiella. For this purpose, clones (67 in total) belonging to all ten species were selected. Almost all the species were represented by more than one clone. The fingerprinting technique, AFLP, clearly distinguished the species, W. caudata, W. gladiata, W. neotropica, W. rotunda, and W. welwitschii. Apart from confirming the molecular identity of these five species, the plastidic markers could delineate two additional species, W. hyalina and W. denticulata, although the conclusion concerning the latter is restricted by the availability of only one clone. The efficiency of the plastid-derived markers in identifying the number of species-specific clusters followed the sequence rps16 > rpl16 > atpF-atpH. The species W. lingulata, W. oblonga, and W. repanda could not be identified by any of the molecular methods presented here, but could be strictly defined on a morphological basis. In several clones, high amounts of genetic admixtures between different species were detected. Further, simulation studies demonstrated that these clones are genetic hybrids. This might be one of the obstacles in molecular identification of species in the genus Wolffiella.  相似文献   

8.
Five newly identified species of Fomitiporia (F. alpina, F. gaoligongensis, F. hainaniana, F. subrobusta and F. subtropica) and their morphological and molecular characterisation are described in this paper. Fomitiporia alpina sp. nov. is distinguished by its pileate basidiomata, parallel tramal hyphae and large basidiospores (6.5–8 × 6–8 μm), and by its gymnosperm wood-living habitat. Fomitiporia gaoligongensis sp. nov. is distinct from other species due to its semicircular pileus and subglobose to globose basidiospores (6.5–7.6 × 6–7.4 μm). Fomitiporia hainaniana sp. nov. is marked by its resupinate basidiomata, the presence of setae and small globose basidiospores (4–5 × 3.8–4.4 μm). Fomitiporia subrobusta sp. nov. is characterised by its triquetrous basidiomata, small pores (6–9 per mm) with entire and thick dissepiments, and subglobose to obovoid basidiospores (6.2–6.8 × 5.2–6 μm). Fomitiporia subtropica sp. nov. can be differentiated by its resupinate basidiomata, smaller pores (6–10 per mm) and smaller basidiospores (5.2–6 × 4.4–5 μm). Phylogenetic analysis, based on multi-gene comparison of the internal transcribed spacer regions (ITS), nuclear large subunit ribosomal RNA gene regions (nLSU), the translation elongation factor 1-α gene (tef1α) and the second subunit of RNA polymerase II (rpb2), confirmed affinity with the Fomitiporia species and showed association with similar fungi in the genus.  相似文献   

9.
Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world’s most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F IS), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (<50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, >130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.  相似文献   

10.
Combined genetic and morphological data indicate frequent hybridisation between the wood ants Formica polyctena Förster 1850 and F. rufa Linnaeus 1761 in Central Europe. The genetic and morphological traits give a concordant picture of hybridisation with a strong correlation between the genotypic admixture proportions at 19 microsatellite loci and the first vectors of a principal component analysis (P < 0.001) and of a 3-class discriminant analysis (P < 0.001) of 15 quantitative morphological characters. This integrative approach enabled a grouping into F. polyctena, the hybrid and rufa. Genetic differentiation between the hybrid and F. rufa is significantly larger than between the hybrid and polyctena, indicating gene flow mainly between the latter entities. A suggested gene flow bias towards F. polyctena agrees with differential queen acceptance and mating behaviour. Both genetic and phenotypic colony parameters indicate predominance of monogyny in F. rufa but of polygyny in polyctena and the hybrid. Hybrids are intermediate between the parental species in body size, diagnostic morphological characters, monogyny frequency, size of nest population, nest diameter and infestation rate with epizootic fungi. The three entities respond differently to woodland fragmentation. Hybrids are significantly more abundant in forests with a coherent area <300 ha than in woodland above this size. Regions with high hybrid frequency in Germany—the Eastern Oberlausitz (23%) and the Baltic Sea islands Darss, Hiddensee and Rügen (28%)—are characterised by a fragmented woodland structure whereas regions with low hybrid frequency—Brandenburg and the lower Erzgebirge (3.4%)—have clearly larger and more coherent forest systems. Data from other European countries indicate habitat fragmentation to be a facilitating factor but no essential precondition for interspecific hybridisation in these ants. Hybrids are hypothesised to have selective advantage in fragmented systems because of combining the main reproductive and dispersal strategies of the parental species.  相似文献   

11.
12.
Cedrus brevifolia is a narrowly distributed conifer species, currently limited to a single mountain in Cyprus, growing in restricted habitats on sites of different densities and sizes. This study assessed the influence of seed and pollen dispersal, as well as the effect of demographic and genetic features on the magnitude of fine-scale spatial genetic structure (SGS). Sampling was performed in 11 plots where 50 neighboring adult trees were sampled from each plot, while biparentally and paternally inherited genomes were used for analysis with microsatellites. Fine-scale SGS was significant but showed contrasting patterns among plots. Although the magnitude of SGS in C. brevifolia mainly results from restricted seed dispersal, short-distance pollen dispersal could also explain fine-scale SGS in some plots, which is rather uncommon in wind-pollinated conifer species. The lack of a general and consistent trend of SGS among plots and between genomes indicates that pollen and seed dispersal varies at plot level. The complex SGS patterns in C. brevifolia may result from the unequal ratio of male and female strobilies of trees within the same plots, at different reproductive periods. Demographic features such as habitat fragmentation did not influence the magnitude of SGS in C. brevifolia, whereas low tree aggregation reduced it. Further, the significant correlation observed between linkage disequilibrium (LD) and plots with significant SGS supports the assumption that under specific conditions, LD is likely to be caused by the magnitude of SGS.  相似文献   

13.
The present study is aimed to identify genetic variability between two species of Amaranthus viz., A. caudatus and A. hybridus subsp. cruentus, two economically important species, cultivated mainly for grain production. Karyomorphological studies in Amaranthus are scarce, probably due to higher number of small sized chromosomes. Karyomorphological studies were conducted using mitotic squash preparation of young healthy root tips. Karyological parameters and karyotypic formula were established using various software programs and tabulated the karyomorphometric and asymmetry indices viz., Disparity index, Variation coefficient, Total forma percentage, Karyotype asymmetry index, Syi index, Rec index, Interchromosomal and Intrachromosomal asymmetry index and Degree of asymmetry of karyotypes. The mitotic chromosome number observed for A. caudatus was 2n = 32 with a gametic number n = 16 and A. hybridus subsp. cruentus was 2n = 34 with a gametic number n = 17. In A. caudatus the chromosome length during somatic metaphase ranged from 0.8698 to 1.7722 μm with a total length of 39.1412 μm. In A. hybridus subsp. cruentus the length of chromosome ranged from 0.7756 to 1.9421 μm with a total length of 44.9922 μm. Various karyomorphometry and asymmetry indices analyzed revealed the extend of interspecific variation and their evolutionary status.  相似文献   

14.
Wild pigs (Sus scrofa) are the most widely distributed invasive wild ungulate in the United States, yet the factors that influence wild pig dispersal and colonization at the regional level are poorly understood. Our objective was to use a population genetic approach to describe patterns of dispersal and colonization among populations to gain a greater understanding of the invasion process contributing to the expansion of this species. We used 52 microsatellite loci to produce individual genotypes for 482 swine sampled at 39 locations between 2014 and 2016. Our data revealed the existence of genetically distinct subpopulations (F ST  = 0.1170, p < 0.05). We found evidence of both fine-scale subdivision among the sampling locations, as well as evidence of long term genetic isolation. Several locations exhibited significant admixture (interbreeding) suggesting frequent mixing of individuals among locations; up to 14% of animals were immigrants from other populations. This pattern of admixture suggested successive rounds of human-assisted translocation and subsequent expansion across Florida. We also found evidence of genetically distinct populations that were isolated from nearby populations, suggesting recent introduction by humans. In addition, proximity to wild pig holding facilities was associated with higher migration rates and admixture, likely due to the escape or release of animals. Taken together, these results suggest that human-assisted movement plays a major role in the ecology and rapid population growth of wild pigs in Florida.  相似文献   

15.
16.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

17.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

18.
Morphological and molecular characterisation of echinostome specimens (Digenea: Echinostomatidae) recovered in one Anas platyrhynchos L. and one Cygnus atratus (Latham) (Anseriformes: Anatidae) from New Zealand revealed the presence of two known species, Echinostoma miyagawai Ishii, 1932 and Echinoparyphium ellisi (Johnston & Simpson, 1944) and two species new to science. Comparative morphological and phylogenetic analyses supported the distinct species status of Echinostoma novaezealandense n. sp. ex Branta canadensis (L.), A. platyrhynchos and C. atratus, and Echinoparyphium poulini n. sp. ex C. atratus. Echinostoma novaezealandense n. sp., a species of the “revolutum” species complex characterised by the possession of a head collar armed with 37 spines, keyed down to E. revolutum but was distinguished from the latter in having a much narrower body with almost parallel margins, longer oesophagus, wider cirrus-sac, larger seminal vesicle, much smaller ventral sucker, ovary, Mehlis’ gland and testes, more anteriorly located ovary and testes, and distinctly smaller eggs (81–87 × 42–53 vs 106–136 × 55–70 µm). This new species appears similar to Echinostoma acuticauda Nicoll, 1914 described in Australia but differs in having a longer forebody, more posteriorly located ovary and testes, and much smaller eggs (81–87 × 42–53 vs 112–126 × 63–75 µm). Echinoparyphium poulini n. sp. is differentiated from the four species of Echinoparyphium possessing 37 collar spines considered valid as follows: from E. chinensis Ku, Li & Chu, 1964 in having a much smaller body, four (vs five) angle spines and simple seminal vesicle (vs bipartite); from E. schulzi Matevosyan, 1951 in having a less robust body at a comparable body length, much smaller ventral sucker, ovary and testes, and longer but narrower eggs (87–109 × 50–59 vs 70–85 × 60–84 µm); and from the two smaller forms, E. serratum Howell, 1968 and E. aconiatum Dietz, 1909, in a number of additional metrical features correlated with body size and especially in the possession of much larger collar spines. Partial fragments of the mitochondrial nad1 and 28S rRNA genes were amplified for representative isolates of the four species and analysed together with sequences for Echinostoma spp. and Echinoparyphium spp. available on GenBank. Phylogenetic analyses based on the mitochondrial nad1 gene revealed congruence between the molecular data and species identification/delineation based on morphology; this was corroborated by the 28S rDNA sequence data.  相似文献   

19.
This study examines the levels of gene flow, the distance and the patterns of pollen and seed dispersal, the intra-population spatial genetic structure (SGS) and the effective population size of a spatially isolated Myracrodruon urundeuva population using five microsatellite loci. The study was carried out in the Paulo de Faria Ecological Station, São Paulo State, Brazil and included the sampling and mapping of 467 adult-trees and 149 juveniles. Open-pollinated seeds (514) from 29 seed-trees were also sampled and genotyped. Significant SGS was detected in both adult (S p  = 0.0269) and juveniles trees (S p  = 0.0246), indicating short-distance seed dispersal. Using maternity analysis, all juveniles had the mother-tree assigned within the stand. A father-tree within the stand was also assigned for 97.3% of the juveniles and 98.4% of offspring. The average pollen dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 3 8\pm 1 6 9 {\text{ m}},{\text{ mean}} \pm {\text{SD}}} \right) \) and offspring \( \left( {\hat{\delta } = 2 5 2\pm 20 4 {\text{ m}}} \right) \) were higher than the average seed dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 2 4\pm 1 50{\text{ m}}} \right) \). About 70% of the pollen from juveniles and 51% from offspring traveled less than 200 m and, 72% of the seeds traveled less than 50 m. The effective population size of the studied sample indicates that the 467 adult-trees and 145 juveniles correspond respectively to 335 and 63 individuals that are neither inbred nor relatives. The results are discussed in relation to their impact on seed collection practices and genetic conservation.  相似文献   

20.
Taxonomic and phylogenetic studies of Haploporus were carried out. Three species in Haploporus, H. cylindrosporus, H. septatus and H. subpapyraceus, are described as new based on morphological differences and molecular phylogenetic analyses inferred from the internal transcribed spacer (ITS), the large subunit nuclear ribosomal RNA gene (nLSU), the small subunit mitochondrial rRNA gene (mtSSU), the second subunit of RNA polymerase II (rpb2) and the translation elongation factor 1-α gene (TEF1) sequences. Haploporus cylindrosporus is characterized by big irregular crystals occasionally present in the subiculum, an abundant oily substance among hyphae and typically cylindrical basidiospores 10–11.5?×?4.5–5 μm; H. septatus differs from other species in the genus by its leathery to corky basidiomata when dry, small round pores (5–6 per mm), simple septate skeletal hyphae at the edge of the dissepiments, and oblong to ellipsoid basidiospores 8.5–11?×?5–6 μm; H. subpapyraceus is separated by white to cream basidiomata, numerous apically simple septate cystidioles and ellipsoid basidiospores 9–12?×?5.5–8 μm. An identification key to accepted species of Haploporus is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号