首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subtypes of purinergic receptors involved in modulation of cytoplasmic calcium ion concentration ([Ca2+]i) and insulin release in mouse pancreatic β-cells were examined in two systems, pancreatic islets in primary culture and beta-TC6 insulinoma cells. Both systems exhibited some physiological responses such as acetylcholine-stimulated [Ca2+]i rise via cytoplasmic Ca2+ mobilization. Addition of ATP, ADP, and 2-MeSADP (each 100 μM) transiently increased [Ca2+]i in single islets cultured in the presence of 5.5 mM (normal) glucose. The potent P2Y1 receptor agonist 2-MeSADP reduced insulin secretion significantly in islets cultured in the presence of high glucose (16.7 mM), whereas a slight stimulation occurred at 5.5 mM glucose. The selective P2Y6 receptor agonist UDP (200 μM) transiently increased [Ca2+]i and reduced insulin secretion at high glucose, whereas the P2Y2/4 receptor agonist UTP and adenosine receptor agonist NECA were inactive. [Ca2+]i transients induced by 2-MeSADP and UDP were antagonized by suramin (100 μM), U73122 (2 μM, PLC inhibitor), and 2-APB (10 or 30 μM, IP3 receptor antagonist), but neither by staurosporine (1 μM, PKC inhibitor) nor depletion of extracellular Ca2+. The effect of 2-MeSADP on [Ca2+]i was also significantly inhibited by MRS2500, a P2Y1 receptor antagonist. These results suggested that P2Y1 and P2Y6 receptor subtypes are involved in Ca2+ mobilization from intracellular stores and insulin release in mouse islets. In beta-TC6 cells, ATP, ADP, 2-MeSADP, and UDP transiently elevated [Ca2+]i and slightly decreased insulin secretion at normal glucose, while UTP and NECA were inactive. RT-PCR analysis detected mRNAs of P2Y1 and P2Y6, but not P2Y2 and P2Y4 receptors.  相似文献   

2.
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.  相似文献   

3.
In order to develop a novel method of visualizing possible Ca~(2+) signaling during the early differentiation of h ESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca~(2+) reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca~(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca~(2+) transients(generated by release from intracellular stores) were detected in 1–12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or Ca Cl_2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor(IP_3R) agonist, small Ca~(2+) transients were generated from day 1 onward. That ATP was inducing Ca~(2+) release from functional IP_3 Rs was demonstrated by treatment with 2-APB, a known IP_3 R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor(Ry R) agonist, a minimal Ca~(2+) response was observed at day 8 of differentiation only. Thus, our data indicate that unlike Ry Rs, IP_3 Rs are present and continually functional at these early stages of cardiomyocyte differentiation.  相似文献   

4.
Extracellular ATP (released by endothelial and immune cells) and its metabolite ADP are important pro-inflammatory mediators via the activation of purinergic P2 receptors (P2Y and P2X), which represent potential new targets for anti-inflammatory therapy. Endothelial P2Y1 receptor (P2Y1R) induces endothelial cell activation triggering leukocyte adhesion. A number of data have implicated melatonin as a modulator of immunity, inflammation, and endothelial cell function, but to date no studies have investigated whether melatonin modulates endothelial P2YR signaling. Here, we evaluated the putative effect of melatonin on P2Y1R-mediated leukocyte adhesion to endothelial cells and TNF-α production, using mesenteric endothelial cells and fresh peripheral blood mononuclear cells isolated from rats. Endothelial cells were treated with the P2Y1R agonist 2MeSATP, alone or in combination with melatonin, and then exposed to mononuclear cells. 2MeSATP increased leukocyte adhesion to endothelial cells and TNF-α production in vitro, and melatonin inhibited both effects without altering P2Y1R protein expression. In addition, assays with the Ca2+ chelator BAPTA-AM indicate that the effect of melatonin on 2MeSATP-stimulated leukocyte adhesion depends on intracellular Ca2+ modulation. P2Y1R is considered a potential target to control chronic inflammation. Therefore, our data unveiled a new endothelial cell modulator of purinergic P2Y1 receptor signaling.  相似文献   

5.

Background

It has been shown that the contractile state of airway smooth muscle cells (SMCs) in response to agonists is determined by the frequency of Ca2+ oscillations occurring within the SMCs. Therefore, we hypothesized that the relaxation of airway SMCs induced by agents that increase cAMP results from the down-regulation or slowing of the frequency of the Ca2+ oscillations.

Methods

The effects of isoproterenol (ISO), forskolin (FSK) and 8-bromo-cAMP on the relaxation and Ca2+ signaling of airway SMCs contracted with methacholine (MCh) was investigated in murine lung slices with phase-contrast and laser scanning microscopy.

Results

All three cAMP-elevating agents simultaneously induced a reduction in the frequency of Ca2+ oscillations within the SMCs and the relaxation of contracted airways. The decrease in the Ca2+ oscillation frequency correlated with the extent of airway relaxation and was concentration-dependent. The mechanism by which cAMP reduced the frequency of the Ca2+ oscillations was investigated. Elevated cAMP did not affect the re-filling rate of the internal Ca2+ stores after emptying by repetitive exposure to 20 mM caffeine. Neither did elevated cAMP limit the Ca2+ available to stimulate contraction because an elevation of intracellular Ca2+ concentration induced by exposure to a Ca2+ ionophore (ionomycin) or by photolysis of caged-Ca2+ did not reverse the effect of cAMP. Similar results were obtained with iberiotoxin, a blocker of Ca2+-activated K+ channels, which would be expected to increase Ca2+ influx and contraction. By contrast, the photolysis of caged-IP3 in the presence of agonist, to further elevate the intracellular IP3 concentration, reversed the slowing of the frequency of the Ca2+ oscillations and relaxation of the airway induced by FSK. This result implied that the sensitivity of the IP3R to IP3 was reduced by FSK and this was supported by the reduced ability of IP3 to release Ca2+ in SMCs in the presence of FSK.

Conclusion

These results indicate that the relaxant effect of cAMP-elevating agents on airway SMCs is achieved by decreasing the Ca2+ oscillation frequency by reducing internal Ca2+ release through IP3 receptors.
  相似文献   

6.
Extracellular ATP triggers changes in intracellular Ca2+, ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca2+ signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca2+ responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca2+ responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y2, P2Y6, and P2Y12 metabotropic receptors and P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2′, 3′-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca2+, while 100 μM suramin, pyridoxal-phosphate-6-azophenyl-2′ 4′-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca2+ responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 μM PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.  相似文献   

7.
In order to elucidate the function of inositol 1,4,5-trisphosphate (IP3)-activated reticular Ca2+ channel (IP3R) in autooscillatory contractile activity of Physarum polycephalum plasmodium, we applied 2-aminoethoxydiphenyl borate (2-APB), a membrane-permeable inhibitor of IP3-induced Ca2+ release. Taking into account that for the type 1 IP3 R the inhibitory efficacy of 2-APB decreases with the rise of the IP3 level [Bilmen, J.G. and Michelangeli, F., Cell Signal., 2002, vol. 14, no. 11, pp. 955–960], 2-APB was applied to plasmodium in normal conditions and after the treatment with glucose or 3-O-methylglucose, the attractants capable to induce an elevation of the IP3 production. We found that 20–50 μM 2-APB induced a reversible cessation of contractile autooscillations, which occurred in two different modes: as a fast stop and a gradual damping. The damping of oscillations was accompanied by an increase in their period, a prolongation of the contraction phase, and, often, by an increase in the mean level of the contraction force. The number of species responding by the fast stop at a 2-APB concentration of 50 μM was two times greater than at 20 μM 2-APB. In the presence of the attractants in concentrations of 10 and 50 mM, the fast stop was never observed at 20 μM of 2-APB. Moreover, the damping of oscillations was preceded by a period of varying duration, when the regular oscillatory mode was maintained. We conclude that the fast stop results from the direct inter-action of 2-APB with IP3R of Physarum polycephalum plasmodium and that IP3R is indispensable for the plasmodial oscillator.  相似文献   

8.
This work shows that ATP activates JNK1, but not JNK2, in rat osteoblasts and ROS-A 17/2.8 osteoblast-like cells. In ROS-A 17/2.8 cells ATP induced JNK1 phosphorylation in a dose- and time-dependent manner. JNK1 phosphorylation also increased after osteoblast stimulation with ATPγS and UTP, but not with ADPβS. RT-PCR studies supported the expression of P2Y2 receptor subtype. ATP-induced JNK1 activation was reduced by PI-PLC, IP3 receptor, PKC and Src inhibitors and by gadolinium, nifedipine and verapamil or a Ca2+-free medium. ERK 1/2 or p38 MAPK inhibitors diminished JNK1 activation by ATP, suggesting a cross-talk between these pathways. ATP stimulated osteoblast-like cell proliferation consistent with the participation of P2Y2 receptors. These results show that P2Y2 receptor stimulation by ATP induces JNK1 phosphorylation in ROS-A 17/2.8 cells in a way dependent on PI-PLC/IP3/intracellular Ca2+ release and Ca2+ influx through stress activated and L-type voltage-dependent calcium channels and involves PKC and Src kinases.  相似文献   

9.
In dividing embryos, a localized elevation in intracellular Ca2+ ([Ca2+]i) at the cleavage furrow has been shown to be essential for cytokinesis. However, the underlying mechanisms for generating and maintaining these [Ca2+]i gradients throughout cytokinesis are not fully understood. In the present study, we analyzed the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) and endoplasmic reticulum (ER) distribution in determining the intracellular Ca2+ gradients in early zebrafish blastomeres. Application of the injected Ca2+ indicator, Indo-1, showed that during the first cell division a standing Ca2+ gradient was formed ∼35 min after fertilization, with the [Ca2+]i spatially decaying from 500–600 nmol/L at the cleavage furrow to 100–200 nmol/L around the nucleus. While the IP3R immunohistochemical fluorescence was relatively concentrated in the peri-furrow region, ER labeling was relatively enriched in both peri-furrow and peri-nuclear regions. Numeric simulation suggested that a divergence in the spatial distribution of IP3R and the locations of Ca2+ uptake within the ER was essential for the formation of a standing Ca2+ gradient, and the Ca2+ gradient could only be well-established under an optimal stoichiometry of Ca2+ uptake and release. Indeed, while inhibition of IP3R Ca2+ release blocked the generation of the Ca2+ gradient at a lower [Ca2+]i level, both Ca2+ release stimulation by inositol 1,4,5-trisphosphate (IP3) injection and ER Ca2+ pump inhibition by cyclopiazonic acid also eliminated the Ca2+ gradients at higher [Ca2+]i levels. Our results suggest a dynamic relationship between ER-mediated Ca2+ release and uptake that underlies the maintenance of the perifurrow Ca2+ gradient and is essential for cytokinesis of zebrafish embryos.  相似文献   

10.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Their regulation by both IP3 and Ca2+ allows interactions between IP3Rs to generate a hierarchy of intracellular Ca2+ release events. These can progress from openings of single IP3R, through near-synchronous opening of a few IP3Rs within a cluster to much larger signals that give rise to regenerative Ca2+ waves that can invade the entire cell. We have used patch-clamp recording from excised nuclear membranes of DT40 cells expressing only IP3R3 and shown that low concentrations of IP3 rapidly and reversibly cause IP3Rs to assemble into small clusters. In addition to bringing IP3Rs close enough to allow Ca2+ released by one IP3R to regulate the activity of its neighbors, clustering also retunes the regulation of IP3Rs by IP3 and Ca2+. At resting cytosolic [Ca2+], lone IP3R are more sensitive to IP3 and the mean channel open time (~10ms) is twice as long as for clustered IP3R. When the cytosolic free [Ca2+] is increased to 1µM, to mimic the conditions that might prevail when an IP3R within a cluster opens, clustered IP3R are no longer inhibited and their gating becomes coupled. IP3, by dynamically regulating IP3R clustering, both positions IP3R for optimal interactions between them and it serves to exaggerate the effects of Ca2+ within a cluster. During the course of these studies, we have observed that nuclear IP3R stably express one of two single channel K + conductances (γK ~120 or 200pS). Here we demonstrate that for both states of the IP3R, the effects of IP3 on clustering are indistinguishable. These observations reinforce our conclusion that IP3 dynamically regulates assembly of IP3Rs into clusters that underlie the hierarchical recruitment of elementary Ca2+ release events.  相似文献   

11.
Intercellular Ca2+ waves can coordinate the action of large numbers of cells over significant distances. Recent work in many different systems has indicated that the release of ATP is fundamental for the propagation of most Ca2+ waves. In the organ of hearing, the cochlea, ATP release is involved in critical signalling events during tissue maturation. ATP-dependent signalling is also implicated in the normal hearing process and in sensing cochlear damage. Here, we show that two distinct Ca2+ waves are triggered during damage to cochlear explants. Both Ca2+ waves are elicited by extracellular ATP acting on P2 receptors, but they differ in their source of Ca2+, their velocity, their extent of spread and the cell type through which they propagate. A slower Ca2+ wave (14 μm/s) communicates between Deiters’ cells and is mediated by P2Y receptors and Ca2+ release from IP3-sensitive stores. In contrast, a faster Ca2+ wave (41 μm/s) propagates through sensory hair cells and is mediated by Ca2+ influx from the external environment. Using inhibitors and selective agonists of P2 receptors, we suggest that the faster Ca2+ wave is mediated by P2X4 receptors. Thus, in complex tissues, the expression of different receptors determines the propagation of distinct intercellular communication signals.  相似文献   

12.

Background  

Granulosa cells play an important endocrine role in folliculogenesis. They mobilize Ca2+ from intracellular stores by a coordinated action between 1,4,5 inositol trisphosphate and ryanodine receptors (IP3R and RyR). The aim of this study was to explore the isoforms of IP3Rs expressed in mouse C57BL/6 NHsd granulosa cells, characterizing their intranuclear localization and the relation with other Ca2+-handling proteins.  相似文献   

13.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

14.
Experiments on cultured mouse adipocytes (9 days in vitro) using fluorescent microscopy have shown that activation of α1- and α2-adrenoceptors by norepinephrine (NE) or α2-adrenoreceptors by L-arginine evokes transient Ca2+ signals, while activation of m3-cholinoreceptors by acetylcholine (ACh) or betaine causes sustained or damped Ca2+ oscillations. The presence in the incubation medium of L-arginine at a low concentration (100–200 μM) is necessary for a vigorous manifestation of these effects, apparently due to transition of protein kinase G (PKG) and phosphodiesterase V into an active state. In the presence of 1–10 mM L-arginine, the amplitude of the Ca2+ transient response to NE increases and signal duration decreases. ACh and NE upon a sequential addition mutually potentiate their effects. Using an inhibitory analysis we show that the observed modes are related to the operation of a signaling pathway with the participation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), endothelial NO synthase (eNOS), cytoplasmic guanylate cyclase (sGC), protein kinase G (PKG), ADP-ribosyl cyclase (CD38), and the ryanodine receptor (RyR). The formation of several loops of positive feedbacks (PF) and negative feedbacks (NF) in the signaling system is possible: (i) short PF loops due to Ca2+-induced Ca2+ release (CICR) from internal stores through the inositol trisphosphate receptor (IP3R) and RyR participating in the transient signal formation; (ii) long PF loop Ca2+ → eNOS → sGC → PKG → CD38 → RyR → Ca2+, which can provide necessary conditions for calcium oscillations arising from short PF loops (CICR); (iii) several NF loops based on PKG-mediated inhibition of IP3R and activation of Ca2+-ATPases of sarco(endo)plasmic reticulum and of the plasma membrane providing a shutdown of signaling by the pathway phospholipase C → IP3R → Ca2+ and limiting Ca2+ rise caused by the pathway PI3K → PKB → eNOS → sGC → PKG → CD38 → RyR → Ca2+. Convergence of signaling pathways that involve α1-, α2-, and m3-receptors and then Gβγ-subunits of Gq and Gq proteins acting on PI3Kγ can provide activation of cytoplasmic PKG, which plays a key role in producing transient responses, in activation of Ca2+ removal and generation of [Ca2+]i oscillations. PKG inhibition (implemented here by KT5823 application) in the presence of any agonist results in rupture of NF loops controlling Ca2+ transporting systems activity that leads to uncontrolled [Ca2+]i rise and cell death.  相似文献   

15.
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.  相似文献   

16.
Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K+ current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K+ currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 ?/?) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K+ currents in Müller cells from ischemic IP 3 R2 ?/? retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 ?/? mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.  相似文献   

17.
Inositol (1,4,5)-trisphosphate receptors (IP3Rs) release intracellular Ca2+ as localized Ca2+ signals (Ca2+ puffs) that represent the activity of small numbers of clustered IP3Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca2+ release channels supporting Ca2+ puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP3R transitions between heterogeneous cellular architectures and the differential behavior of IP3Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP3Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca2+ puffs are supported by a broad range of clustered IP3R microarchitectures; 2), cluster ultrastructure shapes Ca2+ puff characteristics; and 3), loosely corralled IP3R clusters (>200 nm interchannel separation) fail to coordinate Ca2+ puffs, owing to inefficient triggering and impaired coupling due to reduced Ca2+-induced Ca2+ release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca2+ puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca2+ dynamics.  相似文献   

18.
Puffs are local Ca2+ signals that arise by Ca2+ liberation from the endoplasmic reticulum through the concerted opening of tightly clustered inositol trisphosphate receptors/channels (IP3Rs). The locations of puff sites observed by Ca2+ imaging remain static over several minutes, whereas fluorescence recovery after photobleaching (FRAP) experiments employing overexpression of fluorescently tagged IP3Rs have shown that the majority of IP3Rs are freely motile. To address this discrepancy, we applied single-molecule imaging to locate and track type 1 IP3Rs tagged with a photoswitchable fluorescent protein and expressed in COS-7 cells. We found that ∼70% of the IP3R1 molecules were freely motile, undergoing random walk motility with an apparent diffusion coefficient of ∼0.095 μm s−1, whereas the remaining molecules were essentially immotile. A fraction of the immotile IP3Rs were organized in clusters, with dimensions (a few hundred nanometers across) comparable to those previously estimated for the IP3R clusters underlying functional puff sites. No short-term (seconds) changes in overall motility or in clustering of immotile IP3Rs were apparent following activation of IP3/Ca2+ signaling. We conclude that stable clusters of small numbers of immotile IP3Rs may underlie local Ca2+ release sites, whereas the more numerous motile IP3Rs appear to be functionally silent.  相似文献   

19.
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) channel is crucial for the generation and modulation of highly specific intracellular Ca2+ signals performing numerous functions in animal cells. However, the single channel behavior during Ca2+ signals of different spatiotemporal scales is not well understood. To elucidate the correlation between the gating dynamics of single InsP3Rs and spatiotemporal Ca2+ patterns, we simulate a cluster of InsP3Rs under varying ligand concentrations and extract comprehensive gating statistics of all channels during events of different sizes and durations. Our results show that channels gating predominantly in the low activity mode with negligible occupancy of intermediate and high modes leads to single channel Ca2+ release event blips. Increasing occupancies of intermediate and high modes results in events with increasing size. When the channel has more than 50% probability of gating in the intermediate and high modes, the cluster generates very large puffs that would most likely result in global Ca2+ signals. The size, duration and frequency of Ca2+ signals all increase linearly with the total probability of channel gating in the intermediate and high modes. To our knowledge, this is the first study that quantitatively relates the modal characteristics of InsP3R to the shaping of different spatiotemporal scales of Ca2+ signals.  相似文献   

20.
Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum inositol trisphosphate receptors (IP3Rs) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetic needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293 and HeLa) with stable KOs of all three IP3R isoforms (triple KO [TKO]) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely because of adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号