首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The earwig Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae), a generalist predator, has been observed in fruits infested with fruit fly larvae, which are frequently parasitized by parasitoid wasps. Neither the capacity of earwigs to predate on fruit flies nor intraguild interactions between earwigs and fruit fly parasitoids have been investigated. Here, we studied in laboratory conditions the predation on the fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) by the earwig E. annulipes, and whether parasitism of fruit fly larvae by the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) influences predation by the earwig. We evaluated the predation capacity, functional response and prey preference of E. annulipes for parasitized and non-parasitized fruit fly larvae in choice and no-choice tests. We found that earwigs prey on second- and third-instar larvae and pupae of C. capitata and consumed larger numbers of second-instar larvae, followed by third-instar larvae and pupae. Females prey on larger numbers of fruit flies than did males, regardless of the prey developmental stage, but both sexes exhibited a type II functional response. Interestingly, males killed but did not consume fruit fly larvae more than did females. In no-choice tests, earwig females consumed equal numbers of parasitized and non-parasitized fruit fly larvae. However, in choice tests, the females avoided feeding on parasitized larvae. Subsequent tests with hexane-washed parasitized and non-parasitized larvae showed that putative chemical markings left on fruit flies by parasitoids did not drive the earwig preference towards non-parasitized larvae. These findings suggest that E. annulipes is a potential biological control agent for C. capitata, and that, because the earwig avoids consuming larvae parasitized by D. longicaudata, a combination of the two natural enemies could have an additive effect on pest mortality.  相似文献   

2.
We investigated how infection by the mermithid nematode Gasteromermis sp. affected predation on its nymphal mayfly host, Baetisbicaudatus, by two invertebrate predators – the stonefly nymphs of Kogotusmodestus and the caddisfly larvae of Rhyacophilahyalinata. Predation trials and behavioral observations were conducted in stream-side, flow-through experimental chambers. When parasitized and unparasitized prey were offered in equal numbers, K. modestus consumed significantly more parasitized than unparasitized nymphs. R. hyalinata consumed equal numbers of both prey types. Behavioral observations of foraging K.␣modestus on parasitized and unparasitized prey suggested that the increased consumption of parasitized nymphs was due to differences in the behavior of infected mayflies in response to the predator. Specifically, parasitized nymphs drifted less often to escape an approaching predator (non-contact encounters) compared to unparasitized nymphs, which increased the number of contact encounters and attacks that occurred between K.␣modestus and parasitized prey. Because all hosts are castrated, these behavioral alterations affect only the fitness of the parasite, which is killed along with its host by invertebrate predation. We present a number of hypotheses to explain why the parasite causes increased predation on its host. These include the large size of the parasite affecting the sensory abilities of the host, the larger energetic costs of escape behavior for parasitized individuals, and natural selection from fish predation against drifting behavior by parasitized individuals. Received: 27 May 1996 / Accepted: 30 September 1996  相似文献   

3.
Studies on trophic interactions permits the use of community-wide network analyses to evaluate the consequences of human interventions in natural communities. In this paper, we aimed to get insights into the underlying mechanism of prey selection for four piscivorous species, and evaluate behavioral responses to prey selection after an impoundment. We assemble six food web models to search for the hypothesis that best predict observed prey selection pattern of piscivorous fishes combining the following assumptions: (i) predation window, defined as the size range of prey species consumed by a piscivorous fish; (ii) prey strategies to avoid predation (iii) and prey abundance. We tested the probability of each hypothesis to reproduce two empirical data, one before and one after an impoundment with minimum assumptions. Before impoundment, we found that predators presented switching behavior, preying preferably on abundant prey; while after impoundment, predators consumed prey within its predation window. Those results explained better than the null hypotesis and all other assumptions; and corroborate with both theoretical and empirical studies. We conclude that different assumptions drives piscivorous fish behavior in different environments; and modelling procedures can be used to assess gaps in trophic interactions of fish communities.  相似文献   

4.
自然界中鱼类的捕食者种类繁多,为验证猎物鱼针对不同捕食者是否会做出相异的反捕食策略选择,选取鲫(Carassius auratus)幼鱼为猎物鱼,乌鳢(Channa argus)和胡子鲶(Clarias fuscus)为捕食者,将鲫幼鱼分别暴露于空白(对照)、乌鳢、胡子鲶和双捕食者(同时存在乌鳢和胡子鲶)环境中持续2个月,随后考查不同组鲫幼鱼的生长、行为特征、形态和运动能力等指标之间的差异。结果表明:经过2个月的捕食胁迫处理,鲫幼鱼的自发运动、隐蔽场所利用率和勇敢性等行为指标在4个组之间均未表现出显著性差异。相比对照组,乌鳢、胡子鲶和双捕食者暴露组鲫幼鱼的快速启动反应时滞显著缩短(P<0.05);但所有处理组中仅乌鳢暴露组鲫幼鱼的快速启动120ms移动距离(S120ms)和体高(BD)显著高于对照组(P<0.05)。另外鲫幼鱼的临界游泳速度(Ucrit)和活跃代谢率(MO2active)在各组之间也未表现出显著差异。乌鳢暴露组鲫幼鱼快速启动能力的提升可能与形态上体高的提高有关;另外相比临界游泳能力,快速启动能力可能在鱼类逃避捕食者过程中更为关键;鲫幼鱼表现出对乌鳢的反应最为明显,可能与乌鳢口裂较大,给鲫幼鱼带来的威胁更大有关。整体而言,应对捕食胁迫时,鲫幼鱼仅表现出形态和快速启动能力的反捕食响应,其行为特征的保守性可能是对生长作出的妥协,这对于鱼类适应生境中长期存在的捕食胁迫十分关键。  相似文献   

5.
Fish raised in aquaculture ponds may get infected with fishborne zoonotic trematodes (FZT) during the nursing stage. Freshwater snails serve as intermediate hosts for FZT and we wanted to explore the possibility of controlling snails by stocking nursery ponds with a few juvenile specimens of the mollusc-eating fish, black carp (Mylopharyngodon piceus). Obviously, the risk that black carp might also prey on the juvenile fishes in nursery ponds should first be assessed. Laboratory trials showed that all size classes of juvenile black carp consumed fry of common carp (Cyprinus carpio) even when offered snails as food; the odds of survival of fry from tanks with medium sized and large black carp was 5.6% and 39.9%, respectively of that of fry in tanks with small sized black carp. Since the large black carp also consumed fewer snails than medium sized fish, we believe that large specimens were stressed in the experimental aquaria. Under semi-field conditions, presence of the black carp had no effect on survival of fry of Oreochromis niloticus and C. carpio both in the absence and presence of snails as alternative food. The black carp consumed most snails offered with the exception of some of the large snails. We conclude that under field conditions, predation by black carp on fish fry is minimal and field trials in nursery ponds are warranted. Due to the risks that black carp pose to native imperiled snails and other molluscs, trials should be restricted to ponds within the fish’s native or existing range.  相似文献   

6.
1. We experimentally tested if a multiplicative risk model accurately predicted the consumption of a common mayfly at risk of predation from three predator species in New Zealand streams. Deviations between model predictions and experimental observations were interpreted as indicators of ecologically important interactions between predators. 2. The predators included a drift‐feeding fish [brown trout (T), Salmo trutta], a benthivorous fish [galaxiid (G), koaro, Galaxias brevipennis] and a benthic predatory stonefly (S; Stenoperla sp.) with Deleatidium sp. mayflies as prey. Eight treatments with all predator species combinations and a predator‐free control were used. Experiments were performed in aquaria with cobbles as predator refuges for mayflies and we measured the proportion of prey consumed after 6 h for both day and night trials. 3. Trout consumed a higher proportion of prey than other predators. For the two predator treatments we found less than expected prey consumption in the galaxiid + trout treatment (G + T) for both day and night trials, whereas a higher than expected proportion of prey was consumed during night time in the stonefly + trout (S + T) treatment. 4. The results indicate interference (G + T) and facilitation (S + T) between predators depending on predator identity and time of day. Thus, to make accurate predictions of interspecific interactions, it is necessary to consider the ecology of individual species and how differences influence the direction and magnitude of interactions.  相似文献   

7.
The aim of the study was to determine the susceptibility to predation of Atlantic sturgeon larvae (Acipenser oxyrinchus) reared under traditional hatchery conditions. Experiments were conducted to determine whether predators would prey on Atlantic sturgeon if alternative prey was available and if the presence of substrate on the tank bottom impacted the number of Atlantic sturgeon consumed. European perch (Perca fluviatilis) was used as the predator, and the alternative prey were three‐spined stickleback (Gasterosteus aculeatus) or gudgeon (Gobio gobio). The predators and alternative prey were obtained from the wild. The mortality of sturgeon (n = 10) and alternative prey (n = 10) caused by four predators was recorded during 15 min trials. Trials with three‐spined stickleback and gudgeon as alternative prey were performed separately. Each experimental trial was repeated five times. The predators consumed significantly more Atlantic sturgeon than alternative prey in both the experimental setups when the bottom of the tank was covered with gravel and stone substrate and when there was no substrate. In trials with three‐spined stickleback the mortality of Atlantic sturgeon in both experimental setups was 94 ± 8.94%, while that of three‐spined stickleback in the setup with substrate was 20 ± 19.23%, and without substrate it was 22 ± 10.00%. European perch also consumed more Atlantic sturgeon than they did gudgeon, and the mean Atlantic sturgeon mortality in the experimental setup with substrate was 94 ± 5.48%, while for gudgeon it was 48 ± 8.37%. In the experimental setup without substrate the predators also consumed substantially more Atlantic sturgeon than gudgeon, with a mean Atlantic sturgeon mortality of 94 ± 8.94%, while for gudgeon it was 76 ± 5.48%. The study indicated that hatchery reared Atlantic sturgeon larvae are susceptible to predation by European perch. Predation could impact the survival of juvenile Atlantic sturgeon in the natural environment, and it could be one of the factors that is impeding the restoration of this species in the Baltic Sea basin.  相似文献   

8.
Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources. Received: 1 June 1998 / Accepted: 12 October 1998  相似文献   

9.
Summary In a series of laboratory experiments we examined the hypothesis that larvae of stream mayflies would respond to the presence of two different types of predators in such a way as to minimize their risk of being consumed by each. Positioning of larvae (whether they frequent the top, sides, or bottom of stones) of Baetis tricaudatus and Ephemerella subvaria was altered by the presence of predaceous stoneflies (Agnetina capitata) with a larger proportion of the population occurring on the upper surfaces, where the probability of encountering the predator was lowest. The presence of a benthivorous fish (Cottus bairdi) had no significant effects on positioning of the mayfly larvae. Lack of fish effects may reflect an inability of the mayflies to detect or respond to sculpins, or alternately may indicate that sculpins do not normally present a important predation risk for these mayflies. Failure of mayfly prey to account for fish predators when responding to the presence of stoneflies appcars to explain facilitation previously observed between stoneflies and sculpins.  相似文献   

10.
Summary We conducted a series of field experiments to examine the roles of refuge and food availability in explaining the distribution and abundance of fish in tidal freshwater marsh creeks. Two hypotheses were tested: (1) relative predation pressure is less in SAV than in unvegetated areas and (2) fish food availability is greater in SAV than in nearby unvegetated areas. Tethering experiments using mummichogs (Fundulus heteroclitus) in vegetated and unvegetated areas revealed that relative predation pressure was significantly less in areas with SAV. Banded killifish (Fundulus diaphanus) maintained in vegetated enclosures consumed prey associated with SAV, whereas those held in unvegetated pens had empty stomachs. No differences were found in the number of prey eaten by bluespotted sunfish (Enneacanthus gloriosus) or mummichogs when confined in vegetated or unvegetated enclosures. However, larger prey were consumed by bluespotted sunfish and mummichogs maintained in vegetated enclosures. These data suggest that foraging profitability is significantly enhanced by feeding in the SAV. Submerged plant beds in tidal freshwater marsh creeks not only afford protection from predators, but also provide a rich foraging habitat. By foraging in SAV, fish consume larger prey and may have higher growth rates, lower mortality, and higher fecundity.  相似文献   

11.
王亚  付成  胡月  付世建 《水生生物学报》2021,45(5):1154-1163
为了比较早期捕食胁迫经历和当前环境中存在的捕食者对鱼类行为的影响, 并考查这些影响是否存在种间差异, 研究分别考查了测定环境(有、无捕食者存在)对有、无捕食胁迫经历的鳊(Parabramis pekinensis)、草鱼(Ctenopharyngodon idellus)、鲫(Carassius auratus)和中华倒刺鲃(Spinibarbus sinensis)等4种鲤科鱼类探索性、活跃性和勇敢性的影响。结果发现: 早期捕食胁迫经历与当前环境条件对鱼类行为产生截然不同的影响, 且存在较大的种间差异。无捕食胁迫经历的鳊、草鱼和中华倒刺鲃均会对陌生的捕食者乌鳢(Channa argus)做出行为响应, 提示这3种鱼可能对陌生捕食者具有一定的识别能力, 但这种识别与猎物鱼通过捕食胁迫经历获得的识别仍具有一定差距; 具有捕食胁迫经历的鳊和中华倒刺鲃在空白环境中未表现出反捕食行为, 可能是节约能量的一种策略。总体而言, 草鱼对捕食胁迫经历和测定环境处理反应更为敏感, 而中华倒刺鲃的反应则相对保守。但当周围环境中存在捕食者时, 4种鲤科鱼类均会通过维持较高运动状态的方式来应对捕食者。维持这种应激状态可能对猎物鱼保持与捕食者的距离, 并随时保持警惕较为关键。  相似文献   

12.
DNA metabarcoding analysis for gut contents has been shown to compensate the disadvantage of traditionally morphological identification and offer higher resolution of prey items in an efficient way. Holland's carp (Spinibarbus hollandi) is a freshwater fish native to southern and eastern Taiwan. In the past two decades, this species has been introduced as a sport fish into the river basins of northern and western Taiwan. The large body size and active predation make it a potential threat for native fishes, but which native species are preyed by Holland's carp remains unknown. In this study, the diet from the gut contents of Holland's carp from the Zhonggang River, an invaded basin, was examined using DNA metabarcoding from 51 individuals and by morphological examinations on 140 samples. Detritus of plants were found in 83.6% samples (117 individuals). Twenty fish species of seven families were identified by DNA metabarcoding, including species of all water layers. Taiwan torrent carp (Acrossocheilus paradoxus) and Rhinogobius spp. are the most common prey items. Based on the results of this study, Holland's carp is considered an opportunistic omnivore because of its diverse diet items, which is an important trait for successful invasive fish species. The population decline of Opsariichthys pachycephalus may not result from the invasion of Holland's carps. Nonetheless, the time lag between successful invasion and the samplings of this study may be a concern because the population size of O. pachycephalus may have declined and become difficult to prey. The Holland's carps consumed the least species in winter; nonetheless, the occurrence frequencies of preys among seasons were not significantly different probably because of limited temperature fluctuation. The smallest Holland's carps consumed the least prey species compared to other size categories, similar to the relationship of prey species number to size of invasive largemouth bass (Micropterus salmoides).  相似文献   

13.
When foraging in communities with mixed prey, generalist predators may be confronted with prey species that differ in quality, size and mobility and interact with one another. To examine prey selection, predation by Macrolophus pygmaeus (Heteroptera: Miridae) was recorded by providing a diet of either one or two prey species of Myzus persicae (third‐instar nymphs), Aphis gossypii (fourth‐instar nymphs), Trialeurodes vaporariorum (third‐instar nymphs) and Ephestia kuehniella (eggs). In the experiments, prey mobility, prey quality and prey biomass were considered. The biomass consumed by the predator was dependent on the combination of prey species and the quantity of biomass offered. In choice experiments with diets mixed of two prey species at equal densities, the predation to A. gossypii was significantly reduced in the presence of E. kuehniella but the rate of consumption of M. persicae, T. vaporariorum and E.kuehniella was not significantly affected by the coexistence of any other species in the mixed prey diet. When equal amounts of biomass from two prey species were provided in combination, the total consumed biomass was significantly reduced in the mixed prey diets composed of E. kuehniella eggs and aphid nymphs. Thus, under the mixed‐prey situation, prey selection by predators may be affected by interactions among prey species differing in traits such as quality, mobility and size.  相似文献   

14.
Understanding predator–prey interactions and food web dynamics is important for ecosystem-based management in aquatic environments, as they experience increasing rates of human-induced changes, such as the addition and removal of fishes. To quantify the post-stocking survival and predation of a prey fish in Lake Ontario, 48 bloater Coregonus hoyi were tagged with acoustic telemetry predation tags and were tracked on an array of 105 acoustic receivers from November 2018 to June 2019. Putative predators of tagged bloater were identified by comparing movement patterns of six species of salmonids (i.e., predators) in Lake Ontario with the post-predated movements of bloater (i.e., prey) using a random forests algorithm, a type of supervised machine learning. A total of 25 bloater (53% of all detected) were consumed by predators on average (± S.D. ) 3.1 ± 2.1 days after release. Post-predation detections of predators occurred for an average (± S.D. ) of 78.9 ± 76.9 days, providing sufficient detection data to classify movement patterns. Tagged lake trout Salvelinus namaycush provided the most reliable classification from behavioural predictor variables (89% success rate) and was identified as the main consumer of bloater (consumed 50%). Movement networks between predicted and tagged lake trout were significantly correlated over a 6 month period, supporting the classification of lake trout as a common bloater predator. This study demonstrated the ability of supervised learning techniques to provide greater insight into the fate of stocked fishes and predator–prey dynamics, and this technique is widely applicable to inform future stocking and other management efforts.  相似文献   

15.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

16.
Effects of predation by carp (Cyprinus carpio L) were analysed in an experimental fishpond where the main components of the benthic fauna were tubificids. Enclosures inaccessible to fishes were compared with the rest of the pond stocked with 30 young carps (1+). Fish predation reduced the density, biomass and production of prey; the production of Tubificidae inside the enclosures was 1.7 times higher than that of the part of the pond stocked with fishes. On the other hand tubificid turnover ratios (P/B) inside and outside enclosures were not significantly different (respectively 5.57 and 5.38), and the size distribution of tubificids was not significantly modified. The ratio of the energetic equivalent of net fish production to biomass of tubificids consumed was 5.59%.  相似文献   

17.
Intraguild predation (IGP) is pervasive in many managed and unmanaged ecosystems and may have negative, neutral or positive effects on the biological control of pest insects. Both generalist predators and aphelinid parasitoids attack Bemisia tabaci (Gennadius) Biotype B (=B. argentifolii Perring & Bellows) on cotton in the southwestern USA. Free-choice and no-choice laboratory assays were conducted to quantify prey consumption patterns and preference by three representative generalist predators, Geocoris punctipes (Say), Orius insidiosus (Say), and Hippodamia convergens Guérin-Méneville, offered fourth instar B. tabaci nymphs and nymphs parasitized by Eretmocerus sp. nr. emiratus. All three predators showed a significant preference for larval and pupal stage parasitoids over early fourth instar nymphs, but G. punctipes and O. insidiosus were non-discriminating when offered a choice of larval parasitoids and late fourth instar nymphs. The potential implications of these observed patterns for the field were examined through sensitivity analyses of existing field life table data. First, preference for parasitized hosts alters the methods required for calculating marginal rates of parasitism. Incorporating a preference variable in the estimation procedure had a very small positive effect (0.02–1.13% change) on total generational mortalities observed in previous life table studies. However, further hypothetical analyses suggested that under circumstances of lower generational mortality and higher levels of either apparent parasitism or predation, high levels of predator preference for parasitized prey could alter estimates of total mortality as much as 14%. Second, although intraguild predation was demonstrated, the implications for biological control are unclear. Based on field life table data the rate of IGP ranged from 0.019 to 0.126 depending on predator species and prey comparison, but accounting for these levels of IGP had only small negative effects on total generational mortalities (0.193–1.278% change).  相似文献   

18.
G. Ernsting 《Oecologia》1977,31(1):13-20
Summary With diurnally active predators like Notiophilus biquttatus F. food deprivation is involved in predation in two ways: as a consequence of food shortage (i.e., low prey density), and as a consequence of the night period. The pattern of food intake after deprivation at night has been studied with respect to two prey species and differently deprived predators. They prey species represent a locomotory active one (Orchesella cincta) and a locomotory inactive one (Tomocerus minor). It appears that the rate of predation after deprivation shows a distinct pattern, initially high and then slowing to a more or less constant value. This pattern is influenced by food deprivation and type of prey. The beetles preying on O. cincta consumed more prey than those preying on T. minor. The more deprived predators compensated for deprivation by a higher daily predation when O. cincta was the prey, but not when T. minor was. Consequences of these findings are discussed with respect to diet composition and functional response.  相似文献   

19.
Brenneis VE  Sih A  de Rivera CE 《Oecologia》2011,167(1):169-179
Introduced species interact both directly and indirectly with native species. We examine interactions between the introduced New Zealand mud snail (Potamopyrgus antipodarum) and native estuarine invertebrates and predators through experiments and field studies. A widely held management concern is that when P. antipodarum, which has low nutritional value, becomes abundant, it replaces nutritious prey in fish diets. We tested two key components of this view: (1) that fish consume, but get little direct nutritional value from P. antipodarum; and (2) that P. antipodarum has an indirect negative effect on fish by reducing the energy derived from native prey. We also examined predation by the native signal crayfish, Pacifastacus leniusculus. Laboratory feeding trials showed that both crayfish and fish consume P. antipodarum, a direct effect. Crayfish consumed and successfully digested higher numbers of snails than did fish [Pacific staghorn sculpin (Leptocottus armatus), three spine stickleback (Gasterosteus aculeatus), and juvenile starry flounder (Platicthys stellatus)]. P. antipodarum occurred at low frequencies in the stomachs of wild-caught fish. More interesting were the indirect effects of this invader, which ran counter to predictions. P. antipodarum presence was associated with no change or an increase in the amount of energy derived from native prey by predators. The presence of P. antipodarum also led to increased consumption of and preference for the native amphipod Americorophium salmonis over the native isopod Gnorimosphaeroma insulare. This is an example of short-term, asymmetric, apparent competition, in which the presence of one prey species (snails) increases predation on another prey species (the amphipod).  相似文献   

20.
Booth DJ  Beretta GA 《Oecologia》2004,140(2):289-294
Settlement rate is considered to be a major determinant of the population structure of coral reef fishes. In this study, the effects of larval physiological condition on survival, predation risk and competitive ability are assessed for a small damselfish, Pomacentrus moluccensis. New settlers were collected and fed for 5 days to produce high and low condition (measured as lipid) treatment fish. In a field experiment, pairs (one high and one low condition fish) were transplanted to corals. Persistence over 2 weeks was much higher (100% vs. 25%) in high condition fish. In mixed groups in the laboratory, high condition fish were both aggressively dominant and consumed more of a limiting prey source than low condition fish. In addition, low condition fish were shown to be at much higher risk of predation. All of the low condition fish but only 33% of high condition fish in mixed groups were consumed by fish predators, and in a separate experiment, 73% of feeding strikes by predators were directed at low condition fish. Quality of new settlers can have an important influence on subsequent juvenile survival. The mechanisms for this effect are likely to include a combination of effects of condition on food competition and predation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号