首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Comparative genomic hybridization (CGH) is a relatively new molecular cytogenetic method for detecting chromosomal imbalance. Karyotyping of human metaphases is an important step to assign each chromosome to one of 23 or 24 classes (22 autosomes and two sex chromosomes). Automatic karyotyping in CGH analysis is needed. However, conventional karyotyping approaches based on DAPI images require complex image enhancement procedures. METHODS: This paper proposes a simple feature extraction method, one that generates density profiles from original true color CGH images and uses normalized profiles as feature vectors without quantization. A classifier is developed by using support vector machine (SVM). It has good generalization ability and needs only limited training samples. RESULTS: Experiment results show that the feature extraction method of using color information in CGH images can improve greatly the classification success rate. The SVM classifier is able to acquire knowledge about human chromosomes from relatively few samples and has good generalization ability. A success rate of moe than 90% has been achieved and the time for training and testing is very short. CONCLUSIONS: The feature extraction method proposed here and the SVM-based classifier offer a promising computerized intelligent system for automatic karyotyping of CGH human chromosomes.  相似文献   

2.
Yu K  Ji L 《Cytometry》2002,48(4):202-208
BACKGROUND: Comparative genomic hybridization (CGH) is a relatively new molecular cytogenetic method that detects chromosomal imbalances. Automatic karyotyping is an important step in CGH analysis because the precise position of the chromosome abnormality must be located and manual karyotyping is tedious and time-consuming. In the past, computer-aided karyotyping was done by using the 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI)-inverse images, which required complex image enhancement procedures. METHODS: An innovative method, kernel nearest-neighbor (K-NN) algorithm, is proposed to accomplish automatic karyotyping. The algorithm is an application of the "kernel approach," which offers an alternative solution to linear learning machines by mapping data into a high dimensional feature space. By implicitly calculating Euclidean or Mahalanobis distance in a high dimensional image feature space, two kinds of K-NN algorithms are obtained. New feature extraction methods concerning multicolor information in CGH images are used for the first time. RESULTS: Experiment results show that the feature extraction method of using multicolor information in CGH images improves greatly the classification success rate. A high success rate of about 91.5% has been achieved, which shows that the K-NN classifier efficiently accomplishes automatic chromosome classification from relatively few samples. CONCLUSIONS: The feature extraction method proposed here and K-NN classifiers offer a promising computerized intelligent system for automatic karyotyping of CGH human chromosomes.  相似文献   

3.
Garini Y  Gil A  Bar-Am I  Cabib D  Katzir N 《Cytometry》1999,35(3):214-226
BACKGROUND: Various approaches that were recently developed demonstrate the ability to simultaneously detect all human (or other species) chromosomes by using combinatorial labeling and fluorescence in situ hybridization (FISH). With the growing interest in this field, it is important to develop tools for optimizing and estimating the accuracy of different experimental methods. METHODS: We have analyzed the principles of multiple color fluorescence imaging microscopy. First, formalism based on the physical principles of fluorescence microscopy and noise analysis is introduced. Next, a signal to noise (S/N) analysis is performed and summarized in a simple accuracy criterion. The analysis assumes shot noise to be the dominant source of noise. RESULTS: The accuracy criterion was used to calculate the S/N of multicolor FISH (M-FISH), spectral karyotyping, ratio imaging, and a method based on using a set of broad band filters. Spectral karyotyping is tested on various types of samples and shows accurate classifications. We have also tested classification accuracy as a function of total measurement time. CONCLUSIONS: The accuracy criterion that we have developed can be used for optimizing and analyzing different multiple color fluorescence microscopy methods. The assumption that shot noise is dominant in these measurements is supported by our measurements.  相似文献   

4.
BACKGROUND: Multiplex or multicolor fluorescence in situ hybridization (M-FISH) is a recently developed cytogenetic technique for cancer diagnosis and research on genetic disorders. By simultaneously viewing the multiply labeled specimens in different color channels, M-FISH facilitates the detection of subtle chromosomal aberrations. The success of this technique largely depends on the accuracy of pixel classification (color karyotyping). Improvements in classifier performance would allow the elucidation of more complex and more subtle chromosomal rearrangements. Normalization of M-FISH images has a significant effect on the accuracy of classification. In particular, misalignment or misregistration across multiple channels seriously affects classification accuracy. Image normalization, including automated registration, must be done before pixel classification. METHODS AND RESULTS: We studied several image normalization approaches that affect image classification. In particular, we developed an automated registration technique to correct misalignment across the different fluor images (caused by chromatic aberration and other factors). This new registration algorithm is based on wavelets and spline approximations that have computational advantages and improved accuracy. To evaluate the performance improvement brought about by these data normalization approaches, we used the downstream pixel classification accuracy as a measurement. A Bayesian classifier assumed that each of 24 chromosome classes had a normal probability distribution. The effects that this registration and other normalization steps have on subsequent classification accuracy were evaluated on a comprehensive M-FISH database established by Advanced Digital Imaging Research (http://www.adires.com/05/Project/MFISH_DB/MFISH_DB.shtml). CONCLUSIONS: Pixel misclassification errors result from different factors. These include uneven hybridization, spectral overlap among fluors, and image misregistration. Effective preprocessing of M-FISH images can decrease the effects of those factors and thereby increase pixel classification accuracy. The data normalization steps described in this report, such as image registration and background flattening, can significantly improve subsequent classification accuracy. An improved classifier in turn would allow subtle DNA rearrangements to be identified in genetic diagnosis and cancer research.  相似文献   

5.
周大文  管翌华  许淼  颜景斌  黄英  张敬之  任兆瑞 《遗传》2008,30(12):1629-1634
摘要: 为了探讨MLPA-微阵列技术用于检测性染色体异常的可行性和精确性, 针对Y染色体上的3个基因TSPY(p11.2)、PRY(q11)和RBMY(q11.2)设计MLPA探针, 应用MLPA-微阵列技术对15例已知染色体核型的样品进行检测, 将检测结果与各样品核型分析和PCR的检测结果进行对照和比较。结果表明, MLPA-微阵列技术对上述各基因位点的检测结果与样品染色体核型基本吻合, 特别是对二例核型分析没有获得染色体结构异常信息的样品, MLPA-微阵列技术检测出Y染色体微小的缺失或指示某些未知染色体片段的信息, 并与PCR检测结果完全相符。表明文章报道的MLPA-微阵列技术能够检测核型分析无法分辨的微小变化和异常, 显示MLPA-微阵列技术在染色体异常分析中具有很高的检测效率和准确性, 相对于染色体核型分析具有明显的优势, 在临床染色体病诊断中具有较大的应用前景。  相似文献   

6.
7.
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.  相似文献   

8.
Zhang Y  Wang S  Li D  Zhnag J  Gu D  Zhu Y  He F 《PloS one》2011,6(7):e22426

Aim

The diagnosis of hepatocellular carcinoma (HCC) in the early stage is crucial to the application of curative treatments which are the only hope for increasing the life expectancy of patients. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with HCC progression. However, those marker sets shared few genes in common and were poorly validated using independent data. Therefore, we developed a systems biology based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC diagnosis.

Methods and Results

In the Oncomine platform, genes differentially expressed in HCC tissues relative to their corresponding normal tissues were filtered by a corrected Q value cut-off and Concept filters. The identified genes that are common to different microarray datasets were chosen as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and the hub genes were chosen. After that, an HCC diagnostic classifier was constructed by Partial Least Squares modeling based on the microarray gene expression data of the hub genes. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.88∼92.71%) and area under ROC curve (approximating 1.0), and that the network topological features integrated into this classifier contribute greatly to improving the predictive performance. Furthermore, it has been demonstrated that this modeling strategy is not only applicable to HCC, but also to other cancers.

Conclusion

Our analysis suggests that the systems biology-based classifier that combines the differential gene expression and topological features of human protein interaction network may enhance the diagnostic performance of HCC classifier.  相似文献   

9.
Artificial immune recognition system (AIRS) classification algorithm, which has an important place among classification algorithms in the field of artificial immune systems, has showed an effective and intriguing performance on the problems it was applied. AIRS was previously applied to some medical classification problems including breast cancer, Cleveland heart disease, diabetes and it obtained very satisfactory results. So, AIRS proved to be an efficient artificial intelligence technique in medical field. In this study, the resource allocation mechanism of AIRS was changed with a new one determined by fuzzy-logic. This system, named as fuzzy-AIRS was used as a classifier in the diagnosis of lymph diseases, which is of great importance in medicine. The classifications of lymph diseases dataset taken from University of California at Irvine (UCI) Machine Learning Repository were done using 10-fold cross-validation method. Reached classification accuracies were evaluated by comparing them with reported classifiers in UCI web site in addition to other systems that are applied to the related problems. Also, the obtained classification performances were compared with AIRS with regard to the classification accuracy, number of resources and classification time. While only AIRS algorithm obtained 83.138% classification accuracy, fuzzy-AIRS classified the lymph diseases dataset with 90.00% accuracy. For lymph diseases dataset, fuzzy-AIRS obtained the highest classification accuracy according to the UCI web site. Beside of this success, fuzzy-AIRS gained an important advantage over the AIRS by means of classification time. By reducing classification time as well as obtaining high classification accuracies in the applied datasets, fuzzy-AIRS classifier proved that it could be used as an effective classifier for medical problems.  相似文献   

10.
Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot’s mental state matched significantly better than chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.  相似文献   

11.
Conventional banding techniques can characterize chromosomal aberrations associated with tumors and congenital diseases with considerable precision. However, chromosomal aberrations that have been overlooked or are difficult to analyze even by skilled cytogeneticists were also often noted. Following the introduction of multicolor karyotyping such as spectral karyotyping (SKY) and multiplex-fluorescence in situ hybridization (M-FISH), it is possible to identify this kind of cryptic or complex aberration comprehensively by a single analysis. To date, multicolor karyotyping techniques have been established as useful tools for cytogenetic analysis. However, since this technique depends on whole chromosome painting probes, it involves limitations in that the origin of aberrant segments can be identified only in units of chromosomes. To overcome these limitations, we have recently developed spectral color banding (SCAN) as a new multicolor banding technique based on the SKY methodology. This new technique may be deemed as an ideal chromosome banding technique since it allows representation of a multicolor banding pattern matching the corresponding G-banding pattern. We applied this technique to the analysis of chromosomal aberrations in tumors that had not been fully characterized by G-banding or SKY and found it capable of (1) detecting intrachromosomal aberrations; (2) identifying the origin of aberrant segments in units of bands; and (3) precisely determining the breakpoints of complex rearrangements. We also demonstrated that SCAN is expected to allow cytogenetic analysis with a constant adequate resolution close to the 400-band level regardless of the degree of chromosome condensation. As compared to the conventional SKY analysis, SCAN has remarkably higher accuracy for a particular chromosome, allowing analysis in units of bands instead of in units of chromosomes and is hence promising as a means of cytogenetic analysis.  相似文献   

12.
An automated karyotyping system suitable for widespread use in clinical laboratories is described. The software is implemented on a general-purpose, commercially available image analyzer (Magiscan 2) using TV input from a conventional research microscope with minimal modification. The analysis is automatic, but operator interaction is used to resolve difficulties. Extensive experience with a routine clinical workload shows that the system is robust and easy to use and that its use results in a substantially increased laboratory throughput.  相似文献   

13.
The indexes of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), can usually be measured by evaluating the slope and/or magnitude of field excitatory postsynaptic potentials (fEPSPs). So far, the process depends on manually labeling the linear portion of fEPSPs one by one, which is not only a subjective procedure but also a time-consuming job. In the present study, a novel approach has been developed in order to objectively and effectively evaluate the index of synaptic plasticity. Firstly, we introduced an expert system applying symbolic rules to discard the contaminated waveform in an interpretable way, and further generate supervisory signals for subsequent seq 2seq model based on neural networks. For the propose of enhancing the system generalization ability to deal with the contaminated data of fEPSPs, we employed long short-term memory (LSTM) networks. Finally, the comparison was performed between the automatically labeling system and manually labeling system. These results show that the expert system achieves an accuracy of 96.22% on Type-I labels, and the LSTM supervised by the expert system obtains an accuracy of 96.73% on Type-II labels. Compared to the manually labeling system, the hybrids system is able to measure the index of synaptic plasticity more objectively and efficiently. The new system can reach the level of the human expert ability, and accurately produce the index of synaptic plasticity in a fast way.  相似文献   

14.
Unconstrained system that measures physiological information as skin temperatures and heart rate per unit time of a human subject was developed. The system contained portable device included memory control unit, instrumentation unit, timer and batteries, read-out unit, test unit and verify unit. Total number of data and channels, and interval were selected by switches in the memory control unit. The data from the instrumentation unit were transferred to memory control unit and stored in the Erasable Programmable ROM (EPROM). After measurement, EPROM chip was taken off the memory control unit and put on the read-out unit which transferred the data to the microcomputer. The data were directly calculated and analyzed by microcomputer. In application of the instrumentation unit, 8-channel skin thermometer was developed and tested. After amplification, 8 analog signals were multiplexed and converted into the binary codes. The digital signals were sequentially transferred to memory control unit and stored in the EPROM under controlled signal. The accuracy of the system is determined primarily by the accuracy of the sensor of instrumentation unit. The overall accuracy of 8-channel skin thermometer is conservatively stated within 0.1 degree C. This may prove to be useful in providing an objective measurement of human subjects, and can be used in studying environmental effect for human body and sport activities in a large population setting.  相似文献   

15.
Based on the 639 non-homologous proteins with 2910 cysteine-containing segments of well-resolved three-dimensional structures, a novel approach has been proposed to predict the disulfide-bonding state of cysteines in proteins by constructing a two-stage classifier combining a first global linear discriminator based on their amino acid composition and a second local support vector machine classifier. The overall prediction accuracy of this hybrid classifier for the disulfide-bonding state of cysteines in proteins has scored 84.1% and 80.1%, when measured on cysteine and protein basis using the rigorous jack-knife procedure, respectively. It shows that whether cysteines should form disulfide bonds depends not only on the global structural features of proteins but also on the local sequence environment of proteins. The result demonstrates the applicability of this novel method and provides comparable prediction performance compared with existing methods for the prediction of the oxidation states of cysteines in proteins.  相似文献   

16.
The noise level of a high-throughput screening (HTS) experiment depends on various factors such as the quality and robustness of the assay itself and the quality of the robotic platform. Screening of compound mixtures is noisier than screening single compounds per well. A classification model based on na?ve Bayes (NB) may be used to enrich such data. The authors studied the ability of the NB classifier to prioritize noisy primary HTS data of compound mixtures (5 compounds/well) in 4 campaigns in which the percentage of noise presumed to be inactive compounds ranged between 81% and 91%. The top 10% of the compounds suggested by the classifier captured between 26% and 45% of the active compounds. These results are reasonable and useful, considering the poor quality of the training set and the short computing time that is needed to build and deploy the classifier.  相似文献   

17.
Atrial fibrillation (AF) and atrial flutter (AFL) are the two common atrial arrhythmia encountered in the clinical practice. In order to diagnose these abnormalities the electrocardiogram (ECG) is widely used. The conventional linear time and frequency domain methods cannot decipher the hidden complexity present in these signals. The ECG is inherently a non-linear, non-stationary and non-Gaussian signal. The non-linear models can provide improved results and capture minute variations present in the time series. Higher order spectra (HOS) is a non-linear dynamical method which is highly rugged to noise. In the present study, the performances of two methods are compared: (i) 3rd order HOS cumulants and (ii) HOS bispectrum. The 3rd order cumulant and bispectrum coefficients are subjected to dimensionality reduction using independent component analysis (ICA) and classified using classification and regression tree (CART), random forest (RF), artificial neural network (ANN) and k-nearest neighbor (KNN) classifiers to select the best classifier. The ICA components of cumulant coefficients have provided the average accuracy, sensitivity, specificity and positive predictive value of 99.50%, 100%, 99.22% and 99.72% respectively using KNN classifier. Similarly, the ICA components of HOS bispectrum coefficients have yielded the average accuracy, sensitivity, specificity and PPV of 97.65%, 98.16%, 98.75% and 99.53% respectively using KNN. So, the ICA performed on the 3rd order HOS cumulants coupled with KNN classifier performed better than the HOS bispectrum method. The proposed methodology is robust and can be used in mass screening of cardiac patients.  相似文献   

18.
染色体易位重组位点的识别对很多染色体遗传性疾病的诊断有着重要的意义.本文基于实际诊断中采集到的24类染色体数据和9号正常与异常染色体数据,构建了一套自动识别染色体易位重组位点的模型和方法.首先,对染色体图像进行预处理,得到了方向梯度直方图特征(HOG)和局部二值模式特征(LBP),构建了基于纹理特征的染色体24分类多通...  相似文献   

19.
One of the major challenges in the development of prostate cancer prognostic biomarkers is the cellular heterogeneity in tissue samples. We developed an objective Cluster-Correlation (CC) analysis to identify gene expression changes in various cell types that are associated with progression. In the Cluster step, samples were clustered (unsupervised) based on the expression values of each gene through a mixture model combined with a multiple linear regression model in which cell-type percent data were used for decomposition. In the Correlation step, a Chi-square test was used to select potential prognostic genes. With CC analysis, we identified 324 significantly expressed genes (68 tumor and 256 stroma cell expressed genes) which were strongly associated with the observed biochemical relapse status. Significance Analysis of Microarray (SAM) was then utilized to develop a seven-gene classifier. The Classifier has been validated using two independent Data Sets. The overall prediction accuracy and sensitivity is 71% and 76%, respectively. The inclusion of the Gleason sum to the seven-gene classifier raised the prediction accuracy and sensitivity to 83% and 76% respectively based on independent testing. These results indicated that our prognostic model that includes cell type adjustments and using Gleason score and the seven-gene signature has some utility for predicting outcomes for prostate cancer for individual patients at the time of prognosis. The strategy could have applications for improving marker performance in other cancers and other diseases.  相似文献   

20.
This article presents the classification of blood characteristics by a C4.5 decision tree, a naïve Bayes classifier and a multilayer perceptron for thalassaemia screening. The aim is to classify eighteen classes of thalassaemia abnormality, which have a high prevalence in Thailand, and one control class by inspecting data characterised by a complete blood count (CBC) and haemoglobin typing. Two indices namely a haemoglobin concentration (HB) and a mean corpuscular volume (MCV) are the chosen CBC attributes. On the other hand, known types of haemoglobin from six ranges of retention time identified via high performance liquid chromatography (HPLC) are the chosen haemoglobin typing attributes. The stratified 10-fold cross-validation results indicate that the best classification performance with average accuracy of 93.23% (standard deviation = 1.67%) and 92.60% (standard deviation = 1.75%) is achieved when the naïve Bayes classifier and the multilayer perceptron are respectively applied to samples which have been pre-processed by attribute discretisation. The results also suggest that the HB attribute is redundant. Moreover, the achieved classification performance is significantly higher than that obtained using only haemoglobin typing attributes as classifier inputs. Subsequently, the naïve Bayes classifier and the multilayer perceptron are applied to an additional data set in a clinical trial which respectively results in accuracy of 99.39% and 99.71%. These results suggest that a combination of CBC and haemoglobin typing analysis with a naïve Bayes classifier or a multilayer perceptron is highly suitable for automatic thalassaemia screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号