首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three ninhydrin-positive lipids of Streptomyces sioyaensis were found. These lipids were called substance A, B and C, tentatively. Study on the distribution of these lipids in Actinomycetales has shown that substance A was common in all of the strains tested, and that substance B was found in the limited strains. The substance C was characteristic only in Streptomyces sioyaensis.  相似文献   

2.
3.
4.
Lipids were extracted with chloroform-methanol from Streptomyces sioyaensis and fractionated on a silicic acid column. Lipids of Streptomyces sioyaensis were mainly composed of neutral lipids, cardiolipin, phosphatidylethanolamines, phosphatidylinositolmonomanno- side and a new lysine-containing lipid.  相似文献   

5.
Non-proliferating mycelium of Streptomyces sioyaensis was shown to form siomycin in phosphate buffer without addition of an energy source or precursors. This increase of siomycin in phosphate buffer was suppressed by glucose, acetate, l-cysteine, casamino acid, metals (Fe++, Cu++), various metabolic inhibitors, and antibiotics (chloramphenicol, erythromycin), whereas it was promoted by yeast extract, beef extract, l-isoleucine, Mg, etc.

The mechanism of the inhibitory effect of glucose on siomycin formation was investigated. Although glucose suppressed siomycin formation, it was the best carbon source for Streptomyces sioyaensis and vigorously metabolized to keto acids and other metabolites. Glucose suppressed siomycin formation by promoting cellular metabolism and mycelial growth. Siomycin formation was not only different from but also competitive to mycelial growth (cellular protein synthesis).  相似文献   

6.
Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum, Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+→SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O→SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.  相似文献   

7.
Lysine-lipid (siolipin A) and ornithine-lipid (siolipin B) were found at the same time in Streptomyces sioyaensis. They were also found in mutant strains (Lys?, Met?, Try?, His?) of Streptomyces sioyaensis. Ratio of siolipin A to siolipin B differed, depending on the culture conditions. The young mycelium contained siolipin A predominantly, while the aged mycelium did much more siolipin B. They also varied according to pH of the broth. As the whole, the effect was more conspicuous in the mycelium from jar fermenter than that from Sakaguchi flasks.  相似文献   

8.
Oxidation of Elemental Sulfur by Sulfolobus acidocaldarius   总被引:2,自引:6,他引:2       下载免费PDF全文
Oxidation of elemental sulfur by Sulfolobus acidocaldarius, an autotroph which grows at high temperatures and low pH, was examined by use of (35)S-labeled elemental sulfur. When cultured at pH 3.2 and 70 C, S. acidocaldarius oxidized elemental sulfur essentially quantitatively to sulfuric acid. Oxidation rate paralleled growth rate and decrease in pH of the culture medium. Elemental sulfur was not oxidized under these conditions if the culture was poisoned with formaldehyde. During the growth phase, the proportion of cells attached to the sulfur crystals increased progressively, and in the later phases of growth over 10 times more cells were attached to sulfur than were free. Doubling times for eight strains growing on elemental sulfur varied from 37 to 55 h. The organism grows much more rapidly on yeast extract than on sulfur. In a medium containing both sulfur and yeast extract, sulfur oxidation was partially inhibited, although growth was excellent.  相似文献   

9.
To investigate the structure-activity relationships of host-specific HMT- and PM-toxins, 8 mimics of PM-toxin A, a component of the host-specific corn pathotoxin produced by Phyllosticta maydis, were synthesized as stereoisomeric mixtures. All the mimics, except for PM-7137, had four β-ketol groups spaced by tri- and tetra-methylenes, which is shorter than the penta-methylenes involved in native PM-toxins. A comparison of their biological activity clearly demonstrated the general structural features necessary for potent activity: four β-ketol groups were necessary with a spacing of chains equal to or longer than penta-methylene.  相似文献   

10.
Growth of Thiobacillus ferrooxidans on Elemental Sulfur   总被引:1,自引:4,他引:1       下载免费PDF全文
Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-life of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day−1, both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources.  相似文献   

11.
Reduction of inorganic sulfur compounds by the fungus Fusarium oxysporum was examined. When transferred from a normoxic to an anoxic environment, F. oxysporum reduced elemental sulfur to hydrogen sulfide (H2S). This reaction accompanied fungal growth and oxidation of the carbon source (ethanol) to acetate. Over 2-fold more of H2S than of acetate was produced, which is the theoretical correlation for the oxidation of ethanol to acetate. NADH-dependent sulfur reductase (SR) activity was detected in cell-free extracts of the H2S-producing fungus, and was found to be up-regulated under the anaerobic conditions. On the other hands both O2 consumption by the cells and cytochrome c oxidase activity by the crude mitochondrial fractions decreased. These results indicate that H2S production involving SR was due to a novel dissimilation mechanism of F. oxysporum, and that the fungus adapts to anaerobic conditions by replacing the energy-producing mechanism of O2 respiration with sulfur reduction.  相似文献   

12.
13.
During growth on l-cysteine ethylester, Chlorella fusca (211-8b) accumulated a substance which contained bound sulfide, which could be liberated by reduction with dithioerythritol (DTE) as inorganic sulfide. This substance was extracted with hot methanol and purified by thin layer chromatography. This substance liberated free sulfide when incubated with mono- and dithiols, and thiocyanate was formed after heating with KCN. The isolated substance cochromatographed with authentic sulfur flower using different solvent systems for thin layer chromatography, high pressure liquid chromatography, and the identical spectrum with a relative λmax at 263 nm was found. The chemical structure was confirmed by mass spectrometry showing a molecular weight of 256 m/e for the S8 configuration. No labeled elemental sulfur was detected when the cells were grown on [35S]sulfate and l-cysteine ethylester indicating the origin of elemental sulfur from l-cysteine ethylester. C. fusca seems to have enzymes for the metabolism of elemental sulfur, since it disappeared after prolonged growth into the stationary phase. Cysteine was formed from O-acetyl-l-serine and elemental sulfur in the presence of thiol groups and purified cysteine synthase from spinach or Chlorella.  相似文献   

14.
The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.  相似文献   

15.
Thiobacillus thiooxidans cells oxidized elemental sulfur to sulfite, with 1 mol of O2 consumption per mol of sulfur oxidized to sulfite, when the oxidation of sulfite was inhibited with 2-n-heptyl-4-hydroxyquinoline N-oxide.  相似文献   

16.
The speciation transformation of elemental sulfur mediated by the leaching bacterium Acidithiobacillus ferrooxidans was investigated using an integrated approach including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and X-ray absorption near edge spectroscopy (XANES). Our results showed that when grown on elemental sulfur powder, At. ferrooxidans ATCC23270 cells were first attached to sulfur particles and modified the surface sulfur with some amphiphilic compounds. In addition, part of the elemental sulfur powder might be converted to polysulfides. Furthermore, sulfur globules were accumulated inside the cells. XANES spectra of these cells suggested that these globules consisted of elemental sulfur bound to thiol groups of protein. Huan He and Cheng-Gui Zhang made equal contributions to this paper.  相似文献   

17.
In anaerobic or aerobic conditions in the presence of 5 mM sodium cyanide, an inhibitor of iron oxidase, cupric ion (Cu2+) was reduced enzymatically with elemental sulfur (S0) by washed intact cells of Thiobacillus ferrooxidans AP19-3 to give cuprous ion (Cu+). The rate of Cu2+ reduction was proportional to the concentrations of S0 and Cu2+ added to the reaction mixture. The pH optimum for the cupric ion-reducing system was 5.0, and the activity was completely destroyed by 10-min incubation of cells at 70°C. The activity of Cu2+ reduction with S0 by this strain was strongly inhibited by inhibitors of hydrogen sulfide: ferric ion oxidoreductase (SFORase), such as α,α′-dipyridyl, 4,5-dihydroxy-m-benzene disulfonic acid disodium salts, and diazine dicarboxylic acid bis-(N, N-dimethylamide). A SFORase purified from this strain, which catalyzes oxidation of both hydrogen sulfide and S0 with Fe3+ or Mo6+ as an electron acceptor in the presence of glutathione, catalyzed a reduction of Cu2+ by S0, and the Michaelis constant of SFORase for Cu2+ was 7.2 mM, indicating that a SFORase catalyzes the reduction of not only Fe3+ and Mo6+ but also Cu2+.  相似文献   

18.
19.
The oxidation of elemental sulfur by Thiobacillus thiooxidans was studied at pH 2.3, 4.5, and 7.0 in the presence of different concentrations of various anions (sulfate, phosphate, chloride, nitrate, and fluoride) and cations (potassium, sodium, lithium, rubidium, and cesium). The results agree with the expected response of this acidophilic bacterium to charge neutralization of colloids by ions, pH-dependent membrane permeability of ions, and osmotic pressure.  相似文献   

20.
The effect of the aerial mycelium-inducing compound, pamamycin-607, on antibiotic production by several Streptomyces spp. was examined. Exposure to 6.6 μM pamamycin-607 stimulated by 2.7 fold the puromycin production by Streptomyces alboniger NBRC 12738, in which pamamycin-607 had first been isolated, and restored aerial mycelium formation. Pamamycin-607 also stimulated the respective production of streptomycin by S. griseus NBRC 12875 and that of cinerubins A and B by S. tauricus JCM 4837 by approximately 1.5, 1.7 and 1.9 fold. The antibiotic produced by Streptomyces sp. 91-a was identified as virginiamycin M1, and its synthesis was enhanced 2.6 fold by pamamycin-607. These results demonstrate that pamamycin-607 not only restored or stimulated aerial mycelium formation, but also stimulated secondary metabolite production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号