首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an alpha/beta two-layer sandwich architecture formed by three alpha-helices and five beta-strands following the order beta1-alpha1-beta2-beta3-beta4-beta5-alpha2-alpha3. Searches for structural homologs indicate that the TA0095 structure belongs to the TBP-like fold, constituting a novel superfamily characterized by an additional C-terminal helix. The TA0095 structure provides a fold common to the COG4004 proteins that will obviously belong to this new superfamily. Most hydrophobic residues conserved in the COG4004 proteins are buried in the structure determined herein, thus underlying their importance for structure stability. Considering that the TA0095 surface shows a large positively charged patch with a high degree of residue conservation within the COG4004 domain, the biological function of TA0095 and the rest of COG4004 proteins might occur through binding a negatively charged molecule. Like other TBP-like fold proteins, the COG4004 proteins might be DNA-binding proteins. The fact that TA0095 is shown to interact with large DNA fragments is in favor of this hypothesis, although nonspecific DNA binding cannot be ruled out.  相似文献   

2.
The spliceosomal protein p14, a component of the SF3b complex in the U2 small nuclear ribonucleoprotein (snRNP), is essential for the U2 snRNP to recognize the branch site adenosine. The elucidation of the dynamic process of the splicing machinery rearrangement awaited the solution structural information. We identified a suitable complex of human p14 and the SF3b155 fragment for the determination of its solution structure by NMR. In addition to the overall structure of the complex, which was recently reported in a crystallographic study (typical RNA recognition motif fold beta1-alpha1-beta2-beta3-alpha2-beta4 of p14, and alphaA-betaA fold of the SF3b155 fragment), we identified three important features revealed by the NMR solution structure. First, the C-terminal extension and the nuclear localization signal of p14 (alpha3 and alpha4 in the crystal structure, respectively) were dispensable for the complex formation. Second, the proline-rich segment of SF3b155, following betaA, closely approaches p14. Third, interestingly, the beta1-alpha1 loop and the alpha2-beta4 beta-hairpin form a positively charged groove. Extensive mutagenesis analyses revealed the functional relevance of the residues involved in the protein-protein interactions: two aromatic residues of SF3b155 (Phe408 and Tyr412) play crucial roles in the complex formation, and two hydrophobic residues (Val414 and Leu415) in SF3b 155 serve as an anchor for the complex formation, by cooperating with the aromatic residues. These findings clearly led to the conclusion that SFb155 binds to p14 with three contact points, involving Phe408, Tyr412, and Val414/Leu415. Furthermore, to dissect the interactions between p14 and the branch site RNA, we performed chemical-shift-perturbation experiments, not only for the main-chain but also for the side-chain resonances, for several p14-SF3b155 complex constructs upon binding to RNA. These analyses identified a positively charged groove and the C-terminal extension of p14 as RNA-binding sites. Strikingly, an aromatic residue in the beta1-alpha1 loop, Tyr28, and a positively charged residue in the alpha2-beta4 beta-hairpin, Agr85, are critical for the RNA-binding activity of the positively charged groove. The Tyr28Ala and Arg85Ala point mutants and a deletion mutant of the C-terminal extension clearly revealed that their RNA binding activities were independent of each other. Collectively, this study provides details for the protein-recognition mode of p14 and insight into the branch site recognition.  相似文献   

3.
Adult erythrocytes of X. laevis contain six electrophoretically resolvable globin polypeptides while tadpole erythrocytes contain four polypeptides, none of which comigrates with an adult protein. We show that three of the adult proteins are alpha globin polypeptides (alpha 1, alpha 2, alpha 3) and three are beta globin polypeptides (beta 1, beta 2, beta 3). We find that a tadpole alpha globin gene (alpha T1) is linked to the major adult locus in the sequence 5'-alpha T1-alpha 1-beta 1-3' with 5.2 kb separating alpha T1 from alpha 1. Another tadpole alpha globin gene (alpha T2) is linked to the minor adult locus in the sequence 5'-alpha T2-alpha 2-beta 2-3' with 10.7 kb separating alpha T2 from alpha 2. These linkage relationships are consistent with the major and minor loci having arisen by tetraploidization but the different separation of larval and adult globin genes at the two loci indicates the occurrence of some additional chromosomal rearrangement. Two alternative models are presented.  相似文献   

4.
Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed.  相似文献   

5.
Patel B  Finke JM 《Biophysical journal》2007,93(7):2457-2471
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.  相似文献   

6.
Scott KA  Daggett V 《Biochemistry》2007,46(6):1545-1556
The problem of how a protein folds from a linear chain of amino acids to the three-dimensional structure necessary for function is often investigated using proteins with a low degree of sequence identity that adopt different folds. The design of pairs of proteins with a high degree of sequence identity but different folds offers the opportunity for a complementary study; in two highly similar sequences, which residues are the most important in directing folding to a particular structure? Here we use molecular dynamics simulations to characterize the folding-unfolding pathways of a pair of proteins designed by Bryan and co-workers [Alexander, P. A., et al. (2005) Biochemistry 44, 14045-14054; He, Y. N., et al. (2005) Biochemistry 44, 14055-14061]. Despite being 59% identical, the two protein sequences fold to two different structures. The first sequence folds to the alpha+beta protein G structure and the second to the all-alpha-helical protein A structure. We show that the final protein structure is determined early along the folding pathway. In folding to the protein G structure, the single alpha-helix (alpha1) and the beta3-beta4 turn fold early. Formation of the hairpin turn essentially prevents folding to helical structure in this region of the protein. This early structure is then consolidated by formation of long-range hydrophobic interactions between alpha1 and the beta3-beta4 turn. The protein A sequence differs both in the residues that form the beta3-beta4 turn and also in many of the residues that form the early hydrophobic interactions in the protein G structure. Instead, in the protein A sequence, a more hierarchical mechanism is observed, with helices folding before many of the tertiary interactions are formed. We find that small, but critical, sequence differences determine the topology of the protein early along the folding pathway, which help to explain the process by which one fold can evolve into another.  相似文献   

7.
Horng JC  Moroz V  Rigotti DJ  Fairman R  Raleigh DP 《Biochemistry》2002,41(45):13360-13369
A set of peptides derived from the N-terminal domain of the ribosomal protein L9 (NTL9) have been characterized in an effort to define the minimum unit of this domain required to fold and to provide model peptides for the analysis of electrostatic interactions in the unfolded state. NTL9 is a 56-residue alpha-beta protein with a beta1-loop-beta2-alpha1-beta3-alpha2 topology. The beta-sheet together with the first helix comprise a simple example of a common supersecondary motif called the split beta-alpha-beta fold. Peptides corresponding to the beta1-loop-beta2 unit are unstructured even when constrained by an introduced disulfide. The pK(a)s of Asp-8 and Glu-17 in these peptides are slightly lower than the values found for shorter peptides but are considerably higher than the values in NTL9. A 34-residue peptide, which represents the beta1-loop-beta2-alpha1 portion of NTL9, is also unstructured. In contrast, a 39-residue peptide corresponding to the entire split beta-alpha-beta motif is folded and monomeric as judged by near- and far-UV CD, two-dimensional NMR, ANS binding experiments, pK(a) measurements, and analytical ultracentrifugation. The fold is very similar to the structure of this region in the intact protein. Thermal and urea unfolding experiments show that it is cooperatively folded with a DeltaG degrees of unfolding of 1.8-2.0 kcal/mol and a T(m) of 58 degrees C. This peptide represents the first demonstration of the independent folding of an isolated split beta-alpha-beta motif, and is one of only four naturally occurring sequences of fewer than 40 residues that has been shown to fold cooperatively in the absence of disulfides or ligand binding.  相似文献   

8.
A number of studies have examined the structural properties of late folding intermediates of (beta/alpha)8-barrel proteins involved in tryptophan biosynthesis, whereas there is little information available about the early folding events of these proteins. To identify the contiguous polypeptide segments important to the folding of the (beta/alpha)8-barrel protein Escherichia coli N-(5'-phosphoribosyl)anthranilate isomerase, we structurally characterized fragments and circularly permuted forms of the protein. We also simulated thermal unfolding of the protein using molecular dynamics. Our fragmentation experiments demonstrate that the isolated (beta/alpha)(1-4)beta5 fragment is almost as stable as the full-length protein. The far and near-UV CD spectra of this fragment are indicative of native-like secondary and tertiary structures. Structural analysis of the circularly permutated proteins shows that if the protein is cleaved within the two N-terminal betaalpha modules, the amount of secondary structure is unaffected, whereas, when cleaved within the central (beta/alpha)(3-4)beta5 segment, the protein simply cannot fold. An ensemble of the denatured structures produced by thermal unfolding simulations contains a persistent local structure comprised of beta3, beta4 and beta5. The presence of this three-stranded beta-barrel suggests that it may be an important early-stage folding intermediate. Interactions found in (beta/alpha)(3-4)beta5 may be essential for the early events of ePRAI folding if they provide a nucleation site that directs folding.  相似文献   

9.
T Ito  Y Muto  M R Green    S Yokoyama 《The EMBO journal》1999,18(16):4523-4534
The large subunit of the human U2 small nuclear ribonucleoprotein particle auxiliary factor (hU2AF(65)) is an essential RNA-splicing factor required for the recognition of the polypyrimidine tract immediately upstream of the 3' splice site. In the present study, we determined the solution structures of two hU2AF(65) fragments, corresponding to the first and second RNA-binding domains (RBD1 and RBD2, respectively), by nuclear magnetic resonance spectroscopy. The tertiary structure of RBD2 is similar to that of typical RNA-binding domains with the beta1-alpha1-beta2-beta3-alpha2-beta4 topology. In contrast, the hU2AF(65) RBD1 structure has unique features: (i) the alpha1 helix is elongated by one turn toward the C-terminus; (ii) the loop between alpha1 and beta2 (the alpha1/beta2 loop) is much longer and has a defined conformation; (iii) the beta2 strand is (188)AVQIN(192), which was not predicted by sequence alignments; and (iv) the beta2/beta3 loop is much shorter. Chemical shift perturbation experiments showed that the U2AF-binding RNA fragments interact with the four beta-strands of RBD2 whereas, in contrast, they interact with beta1, beta3 and beta4, but not with beta2 or the alpha1/beta2 loop, of RBD1. The characteristic alpha1-beta2 structure of the hU2AF(65) RBD1 may interact with other proteins, such as UAP56.  相似文献   

10.
Ribosome-binding factor A (RbfA) from Escherichia coli is a cold-shock adaptation protein. It is essential for efficient processing of 16S rRNA and is suspected to interact with the 5'-terminal helix (helix I) of 16S rRNA. RbfA is a member of a large family of small proteins found in most bacterial organisms, making it an important target for structural proteomics. Here, we describe the three-dimensional structure of RbfADelta25, a 108 residue construct with 25 residues removed from the carboxyl terminus of full-length RbfA, determined in solution at pH 5.0 by heteronuclear NMR methods. The structure determination was carried out using largely automated methods for determining resonance assignments, interpreting nuclear Overhauser effect (NOE) spectroscopy (NOESY) spectra, and structure generation. RbfADelta25 has an alpha+beta fold containing three helices and three beta-strands, alpha1-beta1-beta2-alpha2-alpha3-beta3. The structure has type-II KH-domain fold topology, related to conserved KH sequence family proteins whose betaalphaalphabeta subunits are characterized by a helix-turn-helix motif with sequence signature GxxG at the turn. In RbfA, this betaalphaalphabeta subunit is characterized by a helix-kink-helix motif in which the GxxG sequence is replaced by a conserved AxG sequence, including a strongly conserved Ala residue at position 75 forming an interhelical kink. The electrostatic field distribution about RbfADelta25 is bipolar; one side of the molecule is strongly negative and the opposite face has a strong positive electrostatic field. A "dynamic hot spot" of RbfADelta25 has been identified in the vicinity of a beta-bulge at strongly conserved residue Ser39 by 15N R(1), R(2) relaxation rate and heteronuclear 15N-1H NOE measurements. Analyses of these distributions of electrostatic field and internal dynamics, together with evolutionary implications of fold and sequence conservation, suggest that RbfA is indeed a nucleic acid-binding protein, and identify a potential RNA-binding site in or around the conserved polypeptide segment Ser76-Asp100 corresponding to the alpha3-loop-beta3 helix-loop-strand structure. While the structure of RbfADelta25 is most similar to that of the KH domain of the E.coli Era GTPase, its electrostatic field distribution is most similar to the KH1 domain of the NusA protein from Thermotoga maritima, another cold-shock associated RNA-binding protein. Both RbfA and NusA are regulated in the same E.coli operon. Structural and functional similarities between RbfA, NusA, and other bacterial type II KH domains suggest previously unsuspected evolutionary relationships between these cold-shock associated proteins.  相似文献   

11.
Olfactory marker protein (OMP) is a ubiquitous, cytoplasmic protein found in mature olfactory receptor neurons of all vertebrates. Electrophysiological and behavioral studies demonstrate that it is a modulator of the olfactory signal transduction pathway. Here, we demonstrate that the solution structure of OMP, as determined by NMR studies, is a single globular domain protein comprised of eight beta-strands forming two beta-sheets oriented orthogonally to one another, thus exhibiting a "beta-clam" or "beta-sandwich" fold: beta-sheet 1 is comprised of beta3-beta8-beta1-beta2 and beta-sheet 2 contains beta6-beta5-beta4-beta7. Insertions include two, long alpha-helices located on opposite sides of the beta-clam and three flexible loops. The juxtaposition of beta-strands beta6-beta5-beta4-beta7-beta2-beta1-beta8-beta3 forms a continuously curved surface and encloses one side of the beta-clam. The "cleft" formed by the two beta-sheets is opposite to the closed end of the beta-clam. Using a peptide titration series, we have identified this cleft as the binding surface for a peptide derived from the Bex1 protein. The highly conserved Omega-loop structure adjacent to the Bex1 peptide-binding surface found in OMP may be the site of additional OMP-protein interactions related to its role in modulating olfactory signal transduction. Thus, the interaction between the OMP and Bex1 proteins could facilitate the interaction between OMP and other components of the olfactory signaling pathway.  相似文献   

12.
The NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima represents an alpha/beta-topology formed by the regular secondary structures alpha1-beta1-beta2-alpha2-beta3-beta4-alpha3- beta5-3(10)-alpha4, with a small anti-parallel beta-sheet of beta-strands 1 and 2, and a mixed parallel/anti-parallel beta-sheet of beta-strands 3-5. Similar folds have previously been observed in other proteins, with amino acid sequence identity as low as 3% and a variety of different functions. There are also 216 sequence homologs of TM0487, which all have the signature sequence of domains of unknown function 59 (DUF59), for which no three-dimensional structures have as yet been reported. The TM0487 structure thus presents a platform for homology modeling of this large group of DUF59 proteins. Conserved among most of the DUF59s are 13 hydrophobic residues, which are clustered in the core of TM0487. A putative active site of TM0487 consisting of residues D20, E22, L23, T51, T52, and C55 is conserved in 98 of the 216 DUF59 sequences. Asp20 is buried within the proposed active site without any compensating positive charge, which suggests that its pK(a) value may be perturbed. Furthermore, the DUF59 family includes ORFs that are part of a conserved chromosomal group of proteins predicted to be involved in Fe-S cluster metabolism.  相似文献   

13.
Trypsin activation of Cry4B, a 130-kDa Bacillus thuringiensis (Bt) protein, produces a 65-kDa toxin active against mosquito larvae. The active toxin is made of two protease resistant-products of ca. 45 kDa and ca. 20 kDa. The cloned 21-kDa fragment consisting of the N-terminal region of the toxin was previously shown to be capable of permeabilizing liposomes. The present study was designed to test the following hypotheses: (1) Cry4B, like several other Bt toxins, is a channel-forming toxin in plannar lipid bilayers; and (2) the 21-kDa N-terminal region, which maps for the first five helices (alpha1-alpha5) of domain 1 in other Cry toxins, and which putatively shares a similar tri-dimensional structure, is sufficient to account for the ion channel activity of the whole toxin. Using circular dichroism spectroscopy and planar lipid bilayers, we showed that the 21-kDa polypeptide existed as an alpha-helical structure and that both Cry4B and its alpha1-alpha5 fragment formed ion channels of 248 +/- 44 pS and 207 +/- 23 pS, respectively. The channels were cation-selective with a potassium-to-chloride permeability ratio of 6.7 for Cry4B and 4.5 for its fragment. However, contrary to the full-length toxin, the alpha1-alpha5 region formed channels at low dose; they tended to remain locked in their open state and displayed flickering activity bouts. Thus, like the full-length toxin, the alpha1-alpha5 region is a functional channel former. A pH-dependent, yet undefined region of the toxin may be involved in regulating the channel properties.  相似文献   

14.
A useful synthon to approach artificial phenylalanyl peptides in a [2 + 2 + 2] cycloaddition reaction, C(alpha,alpha)-dipropargylglycine (Dprg) is examined for its conformational preferences as a constrained residue. Crystal structure analysis and preliminary NMR results establish possible preference of the residue for folded (alpha) rather than extended (beta) region of the straight phi,psi conformational space. Boc-Dprg-L-Leu-OMe (1) displays two molecular conformations within the same crystallographic asymmetric unit, with Dprg in the alpha(R) or alpha(L) conformation, participating in a type I beta-turn or an alpha(L)-alpha(R)-type fold, in which Leu(2) assumes the alpha(R) conformation stereochemically favored for an L-chiral residue. Boc-Dprg-D-Val-L-Leu-OMe (2) displays a type I' beta-turn conformation in crystal, with both Dprg(1) and D-Val(2) assuming the alpha(L) conformation stereochemically favored for a D-chiral residue, with 4 --> 1 type hydrogen bond linking L-Leu(3) NH with Boc CO. NMR analysis using temperature variation, solvent titration, and a spin probe study suggests a fully solvent-exposed nature of Dprg NH, ruling out a fully extended C(5)-type conformation for this residue, and solvent sequestered nature of L-Leu(3) NH, suggesting possibility of a beta-turn due to Dprg assuming a folded conformation.  相似文献   

15.
The water-soluble domain of rat hepatic cytochrome b(5) undergoes marked structural changes upon heme removal. The solution structure of apocytochrome b(5) shows that the protein is partially folded in the absence of the heme group, exhibiting a stable module and a disordered heme-binding loop. The quality of the apoprotein structure in solution was improved with the use of heteronuclear NMR data. Backbone amide hydrogen exchange was studied to characterize cooperative units in the protein. It was found that this criterion distinguished the folded module from the heme-binding loop in the apoprotein, in contrast to the holoprotein. The osmolyte trimethylamine N-oxide (TMAO) did not affect the structure of the apoprotein in the disordered region. TMAO imparted a small stabilization consistent with an unfolded state effect correlating with the extent of buried surface area in the folded region of the native apoprotein. The failure of the osmolyte to cause large conformational shifts in the disordered loop supported the view that the specificity of the local sequence for the holoprotein fold was best developed with the stabilization of the native state through heme binding. To dissect the role of the heme prosthetic group in forcing the disordered region into the holoprotein conformation, the axial histidine belonging to the flexible loop (His63) was replaced with an alanine, and the structural properties of the protein with carbon-monoxide-ligated reduced iron were studied. The His63Ala substitution resulted in a protein with lower heme affinity but nevertheless capable of complete refolding. This indicated that the coordination bond was not necessary to establish the structural features of the holoprotein. In addition, the weak binding of the heme in this protein resulted in conformational shifts at a location distant from the binding site. The data suggested an uneven distribution of cooperative elements in the structure of the cytochrome.  相似文献   

16.
We previously showed that, in contrast to the distribution of S100b (beta beta), S100a0 (alpha alpha) is mainly present in human skeletal and heart muscles at the level of 1-2 micrograms/mg of soluble protein and is universally distributed at high levels in skeletal and heart muscles of various mammals. To elucidate cellular and ultrastructural localizations of the alpha subunit of S100 protein (S100-alpha) in skeletal muscle, we used immunohistochemical and enzyme immunoassay methods. The immunohistochemical study revealed that S100-alpha is mainly localized in slow-twitch muscle fibers, whereas the beta subunit of S100 protein (S100-beta) was not detected in both types of muscle fibers, an observation indicating that the predominant form of S100 protein in the slow-twitch muscle fiber is not S100a or S100b, but S100a0. The quantitative analysis using enzyme immunoassay corroborates the immunohistochemical finding: The S100-alpha concentration of mouse soleus muscle (mainly composed of slow-twitch muscle fibers) is about threefold higher than that of mouse rectus femoris muscle (mainly composed of fast-twitch muscle fibers). At the ultrastructural level, S100-alpha is associated with polysomes, sarcoplasmic reticulum, the plasma membrane, the pellicle around lipid droplets, the outer membrane of mitochondria, and thin and thick filaments, by immunoelectron microscopy.  相似文献   

17.
The construction of a template-assembled synthetic protein (TASP) designed to contain both a 4-helix bundle and a beta-barrel as two folding "domains" is described. For the de novo design of proteins, amphiphilic helices (alpha) and beta-sheets (beta) are covalently attached to a template peptide (T) carrying functional side chains suitably oriented to promote intramolecular folding of the secondary structure blocks into a characteristic packing arrangement, i.e., T8-(4 alpha)(4 beta). The design of this new macromolecule was assisted by computer modeling, which suggested a low-energy conformation with tight hydrophobic packing of the secondary structure subunits. Solid-phase synthesis of the "two-domain" TASP molecule was achieved using orthogonal protection techniques. The solution properties as well as circular dichroism (CD) and infrared spectroscopy (IR) data under various experimental conditions are consistent with the folded conformation suggested by modeling.  相似文献   

18.
Protein domain family YabP (PF07873) is a family of small protein domains that are conserved in a wide range of bacteria and involved in spore coat assembly during the process of sporulation. The 62-residue fragment of Dsy0195 from Desulfitobacterium hafniense, which belongs to the YabP family, exists as a homodimer in solution under the conditions used for structure determination using NMR spectroscopy. The structure of the Dsy0195 homodimer contains two identical 62-residue monomeric subunits, each consisting of five anti-parallel beta strands (β1, 23-29; β2, 31-38; β3, 41-46; β4, 49-59; β5, 69-80). The tertiary structure of the Dsy0195 monomer adopts a cylindrical fold composed of two beta sheets. The two monomer subunits fold into a homodimer about a single C2 symmetry axis, with the interface composed of two anti-parallel beta strands, β1-β1' and β5b-β5b', where β5b refers to the C-terminal half of the bent β5 strand, without any domain swapping. Potential functional regions of the Dsy0195 structure were predicted based on conserved sequence analysis. The Dsy0195 structure reported here is the first representative structure from the YabP family.  相似文献   

19.
The major isoforms of GABA(A) receptors are thought to be composed of two alpha, two beta and one gamma subunit(s). GABA(A) receptors containing two beta1 subunits respond differently to the anticonvulsive compound loreclezole and the general anaesthetic etomidate than receptors containing two beta2 subunits. Receptors containing beta2 subunits show a much larger allosteric stimulation by these agents than those containing beta1 subunits. We were interested to know how receptors containing both beta1 and beta2 subunits, in different positions respond to loreclezole and etomidate. To answer this question, subunits were fused at the DNA level to form dimeric and trimeric subunits. Concatenated receptors (alpha1-beta1-alpha1/gamma2-beta1, alpha1-beta2-alpha1/gamma2-beta1, alpha1-beta1-alpha1/gamma2-beta2 and alpha1-beta2-alpha1/gamma2-beta2) were expressed in Xenopus ooctyes and functionally compared in their response to the agonist GABA and to the positive allosteric modulators, loreclezole and etomidate. We have shown that (I) in the presence of both beta1 and beta2 subunits in the same pentamer (mixed receptors) direct gating by etomidate is similar to exclusively beta1 containing receptors; (II) In mixed receptors, stimulation by etomidate assumed characteristics intermediate to exclusively beta1 or beta2 containing receptors, but the values for the concentrations < 10 microM were always much closer to those observed in alpha1-beta1-alpha1/gamma2-beta1 receptors; and (III) mixed receptors show no positional effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号