首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S J Kohler  M P Klein 《Biochemistry》1976,15(5):967-974
31P nuclear magnetic resonance (NMR) powder spectra have been used to obtain the principal values of the chemical shielding tensors of dipalmitoyellecithin (DPL), dipalmitoylphosphatidylethanolamine, and several related organophosphate mono- and diesters. In addition, the principal values and orientation of the phosphorylethanolamine shielding tensor were determined from 31P NMR spectra of a single crystal. In all compounds studied the shielding tensors were clearly monaxial. The monoester spectra are typified by the spectrum of phosphorylethanolamine with principal values of -67, -13, and 69 ppm relative to H3PO4. The diesters have a larger total anisotrophy, as indicated by the DPL values of -81, -25, and 108 ppm. These data as well as the orientation of the phosphorylethanolamine shielding tensor are correlated with the electron density distribution as determined by the bonding pattern of the phosphate. The spectrum of a DPL-water (1:1) mixture at 52 degrees C has a shift anisotrophy of 30 ppm and displays a shape characteristic of an axial tensor. This change from the rigid lattice DPL pattern is explained in terms of motional narrowing, and the shielding tensor data are used to interpret the motion of the phospholipid head group. Simple rotation about the P-O(glycerol) bond is excluded, and a more complex motion involving rotation about both the P-O (glycerol) and glycerol C(2)-C(3) bonds is postulated.  相似文献   

2.
3.
The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel.  相似文献   

4.
Both native and recombined membrane systems from the human erythrocyte membrane and the rabbit sarcoplasmic reticulum have been studied with 31P Nuclear Magnetic Resonance (NMR). We compare intensities of the anisotropic 31P resonance exhibited by these membranes with the intensity expected from the known phospholipid content of the membranous sample. In a recombinant with human erythrocyte glycophorin, a component of the phospholipid is "missing" from the 31P NMR resonance, apparently due to a severe broadening of the resonance of that component. Approximately 29 phospholipid molecules were found immobilized per glycophorin molecule in the membrane, regardless of the phospholipid:protein ratio. Cholesterol may inhibit the immobilization of phospholipids by glycophorin. Recombinants with band three from the human erythrocyte membrane contain an immobilized phospholipid component, analogous to the results with glycophorin. 31P NMR data from the native sarcoplasmic reticulum membrane also revealed an immobilized phospholipid component whose magnitude is independent of temperature between 30 degrees C and 45 degrees C. Extensive papain proteolysis of the membrane completely digests the Ca++ Mg++ ATPase and removes the immobilization of phospholipids noted in the intact membrane. Limited trypsin cleavage, however, does not completely remove the immobilized component; salt reduces the immobilized component.  相似文献   

5.
Summary Purified, delipidated rhodopsin is recombined with phospholipid using octyl-glucoside (OG) and preformed vesicles. Normal egg phosphatidylcholine, phosphatidylcholine in which the N-methyl groups are fully deuterated, and dioleoyl phosphatidylcholine labeled with deuterium at carbons 9 and 10 were used.31P nuclear magnetic resonance (NMR) and2H NMR measurements were obtained of the pure phospholipids and of the recombined membranes containing rhodopsin.31P NMR of the recombined membrane (containing the deuterated phospholipid) showed two overlapping resonances. One resembled a normal phospholipid bilayer, and the other was much broader, representing a motionally restricted phospholipid headgroup environment. The population of phospholipids in the motionally restricted environment can be modulated by conditions in the media.2H NMR spectra of the same recombined membranes showed only one component. These experimental results agree with a theoretical analysis that predicts an insensitivity of2H NMR to lipids bound to membrane proteins. A model containing at least three different phospholipid environments in the presence of the membrane protein rhodopsin is described.Deceased.  相似文献   

6.
The major phospholipids, phosphatidylcholine and spingomyelin, of low density lipoprotein (LDL) are accessible to small amounts of Pr3+, suggesting that the head groups of all mobile phospholipids are on the surface of the particle in contact with the aqueous medium. The major source of the nuclear Overhauser effect enhancement of 31P resonances is the N-methyl proton of the choline moiety, indicating close N-methyl phosphate group interactions, probably similar to those found previously in phospholipid vesicles. This behavior of the phospholipid head groups in LDL is similar to that in small vesicles without cholesterol, suggesting that in LDL most of the cholesterol is not associated with mobile, surface phospholipids. In contrast to LDL, where the presence of a large protein immobilizes some phospholipid head groups, immobilization does not occur in high density lipoprotein, consistent with occurrence of smaller peptides in the latter.  相似文献   

7.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the 'core' oligosaccharide region. The spectral signals for various ortho- and pyrophosphoric esters were observed. All phosphate groups appeared to be monoesterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

8.
31P NMR spectra of perfused lymphocytes, embedded in alginate capsules and activated by interleukin-2, were remarkably different from those of control lymphocytes. The main differences were the appearance and gradual increase in phosphodiester signals, glycerophosphocholine and glycerophosphoethanolamine. These metabolic changes also occurred following perfusion with phorbol ester and after incubation with phytohemagglutinin (PHA) and were not dependent on a special growth medium. Nifedipine, a calcium channel blocking drug, inhibited the effects of phytohemagglutinin, but not of interleukin-2. There were no NMR spectral differences between peripheral lymphocytes, stimulated for 3 weeks, and tumor-infiltrating lymphocytes. Thus, sustained accelerated turnover of phosphatidylcholine and phosphatidylethanolamine is an inherent feature of the activation process. 31P NMR spectra of lymphocytes are characterized by a low signal of phosphocholine. Perfusion studies with high concentrations of choline and the use of dapsone, an inhibitor of cytidylyltransferase, indicated that choline kinase plays a key role in regulating phosphaditylcholine synthesis in human lymphocytes.  相似文献   

9.
J Seelig  H Gally 《Biochemistry》1976,15(24):5199-5204
The motion of the ethanolamine head group in unsonicated lipid bilayers above and below the phase transition is studied by means of deuterium and phosphorus magnetic resonance. For this purpose, dipalmitoyl-3-sn-phosphatidylethanolamine is selectively deuterated at the two ethanolamine carbon atoms. The deuterium quadrupole splittings of the corresponding bilayer phases are measured at pH 5.5 as a function of temperature. In addition, the phosphorus-31 chemical shift anisotropies of planor-oriented and randomly dispersed samples of dipalmitoyl-3-sn-phosphatidylethanolamine are measured at pH 5.5 and 11 by applying a proton-decoupling field. The knowledge of the static chemical shift tensor (Kohler, S.J., and Klein, M.P. (1976), Biochemistry 15, 967) provides the basis for a quantitive analysis of the head-group motion. The nuclear magnetic resonance data are consistent with a model in which the ethanolamine group is rotating flat on the surface of the bilayer with rapid transitions occurring between two enantiomeric conformations.  相似文献   

10.
11.
Phosphorus nuclear magnetic resonance (31P NMR) spectroscopy was used to estimate the percent of 2,3-diphosphoglycerate and ATP bound to hemoglobin in intact human erythrocytes at 37 degrees C. Binding was assessed by comparing the chemical shifts (delta) of 2,3-diphosphoglycerate and of ATP observed in intact cells with the delta values of these organic phosphates determined in model solutions closely simulating intracellular conditions, in which percent binding was directly evaluated by membrane ultrafiltration. The results showed that the percent of bound 2,3-diphosphoglycerate in intact cells varied with pH, the state of oxygenation, and 2,3-diphosphoglycerate concentration. The values ranged from 33% in cells incubated with glucose in air at an intracellular pH of 7.2 to 100% in cells incubated with inosine in N2 at a pH of 6.75. At the same 2,3-diphosphoglycerate concentration, a greater percentage of the compound appeared to be bound in erythrocytes than in the closely simulated model system. ATP was not significantly bound to hemoglobin under any condition examined, but appeared to be strongly complexed to Mg2+ inside the erythrocyte. The binding percentages for both 2,3-diphosphoglycerate and ATP in intact cells estimated by 31P NMR spectroscopy were lower than those calculated by others from individual association constants determined for the binding of different ligands to hemoglobin.  相似文献   

12.
The structure of the head-group region of some phospholipid bilayers in vesicle form has been studied and an intermolecular association of the N-methyl protons of phosphatidylcholine (PC) with the phosphate of phosphatidylethanolamine (PE) in mixed vesicles has been identified. Observation of a 31P[1H] nuclear Overhauser effect (NOE) in the phosphorus nuclear magnetic resonances of both PC and PE in mixed vesicles demonstrates an intimate dipolar interaction between some protons and the phosphorus nuclei. Substitution of deuterium for the N-methyl protons of PC eliminated the majority of the effect and necessitated the construction of a model of the bilayer surface in which the N-methyl protons of PC could interact closely with the phosphates of neighboring PE molecules. The predominant orientation of the head group must then be parallel to the bilayer surface. The amino protons of PE do not contribute significantly to the observed NOE. A corollary of these results is that there is little if any tendency for either PC or PE in the mixed vesicles to segregate into separate domains. A decrease in NOE in sphingomyelin vesicles on going from H2O to D2O suggests that an exchangeable proton contributes to the NOE. In addition the low value of the NOE observed in D2O suggests that the head-group conformation of sphingomyelin differs from that of PC.  相似文献   

13.
14.
Spin-lattice (Ti) relaxation mesurements can provide information about the presence of oxygen in the environment of a nucleus, since oxygen, by virtue of its paramagnetic properties, increases Ti relaxation rates. Spin-lattice relaxation times were measured for the choline, fatty acid methylene, and fatty acid methyl protons of sonicated dimyristoyl phosphatidyl choline vesicles in D2O at several oxygen pressures. The increase in relaxation rate due to oxygen was found to be greater for the fatty acid resonances than for the choline resonance. This was interpreted to indicate the presence of oxygen in the hydrocarbon core of the bilayer. In addition, the Ti relaxation data permitted calculation of the oxygen diffusion coefficient in the water and lipid phases.  相似文献   

15.
16.
Glycophorin A was phosphorylated using protein kinases and the new protein was investigated using31P NMR spectroscopy. Most of these ~30 moles of phosphate were found to be attached to Ser and Thr. Some of these phosphate residues appear to be affected by the carbohydrate residues present. The phosphorylated protein appears to be in a severe state of aggregation, with the degree of aggregationpH-dependent.  相似文献   

17.
The orientation of the insect antibiotic peptide cecropin A (CecA) in the phospholipid bilayer membrane was determined using (15)N solid-state NMR spectroscopy. Two peptide samples, each specifically labeled with (15)N at Val(11) or Ala(27), were synthesized by solid phase techniques. The peptides were incorporated into phospholipid bilayers, prepared from a mixture of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, and oriented on glass slides. The (15)N chemical shift solid-state NMR spectra from these uniaxially oriented samples display a single (15)N chemical shift frequency for each labeled residue. Both frequencies are near the upfield end of the (15)N chemical shift powder pattern, as expected for an alpha-helix with its long axis in the plane of the membrane and the NH bonds perpendicular to the direction of the magnetic field. These results support a mechanism of action in which CecA binds to and covers the membrane surface, thereby causing a general destabilization and leakiness of the lipid bilayer membrane. The data are discussed in relation to a proposed mechanism of membrane lysis and bacterial killing via an ion channel activity of CecA.  相似文献   

18.
The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were determined with solid-state NMR. All of the peptides were found to have an identical conformation in micelles characterized by an amphipathic alpha-helix consisting of residues Ser5 through Leu19 followed by an unstructured region at the C-terminus. The overall conformation of the peptide moiety was not affected by the glycosylation. Nevertheless, comparison of the relative exchange rates of the Leu12 amide proton might suggest the possibility that fluctuations of the alpha-helix are reduced by glycosylation. The presence of NOEs between the carbohydrate and the peptide moieties of CT-GlcNAc and CT-M6 and the amide proton chemical shift data suggested that the carbohydrate interacted with the peptide, and this might account for the conformational stabilization of the alpha-helix. Both the unmodified CT and the glycosylated CT were found to have orientations with their helix axes parallel to the plane of the lipid bilayers by solid-state NMR spectroscopy.  相似文献   

19.
K A Dill  D Stigter 《Biochemistry》1988,27(9):3446-3453
We develop theory for the lateral interactions among the zwitterionic head groups of phospholipids in monolayers and bilayers, particularly phosphatidylcholine (PC) and phosphatidylethanolamine (PE). With the P- end of the head group anchored at the water/hydrocarbon interface, a balance of two effects dictates the angle that the P--N+ dipole makes with respect to the plane of the bilayer: N+ is driven toward water due to the (Born) electrostatic free energy, but the hydrophobic effect drives the methyl and methylene groups around the N+ charge toward the hydrocarbon. The only adjustable parameter of the model is the average fluctuation of the oil/water interface or, alternatively, the dielectric constant of the hydrocarbon phase. The model predicts that at 5 degrees C the head group dipole should lie largely in the bilayer plane, in accord with X-ray, neutron diffraction, and NMR studies. The theory makes the novel prediction that the N+ end of the dipole becomes increasingly submerged in hydrocarbon with increasing temperature, leading to strongly enhanced lateral repulsion between PC head groups. This prediction is in good agreement with second and third viral coefficients of monolayer lateral pressures, and with the temperature dependence of the former. The theoretical model is consistent with head group fluctuations measured by neutron diffraction of PC and PE bilayers. Because PE has a smaller hydrophobic cluster near N+, its lateral repulsion should be much smaller and less temperature dependent than for PC, also in agreement with equation-of-state measurements. This suggests why at high density PE monolayers have higher melting temperatures than PC monolayers and more propensity for reversed curvature.  相似文献   

20.
A 31P NMR study of the fungal pathogen Candida albicans was carried out. Yeast-form cells at different phases of growth, as well as germ tubes and hyphae were examined. In all cases, the NMR spectra showed well separated resonance peaks arising from phosphorus-containing metabolites, the most prominent being attributable to inorganic phosphate (Pi) polyphosphates, sugar phosphates and mononucleotides, NAD, ADP and ATP. Relevant signals were also detected in the phosphodiester region. The intensity of most signals, as measured relative to that of Pi, was clearly modulated both at the different phases of growth and during yeast-to-mycelium conversion, suggesting significant changes in the intracellular concentration of the corresponding metabolites. In particular, the intensity of the polyphosphate signal was high in exponentially growing, yeast-form cells, then progressively declined in the stationary phase, was very low in germ tubes and, finally, undetectable in hyphae. NMR spectral analysis of the Pi region showed that from early-stationary phase, Pi was present in two different cellular compartments, probably corresponding to the cytoplasm and the vacuole. From the chemical shift of Pi, the pH values of these two compartments could be evaluated. The cytoplasmic pH was generally slightly lower than neutrality (6.7-6.8), whereas the vacuolar pH was always markedly more acidic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号