首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of two components, L-protein as a reductase component and NB-protein as a catalytic component. Elucidation of the crystal structures of NB-protein (Muraki et al., Nature 2010, 465: 110–114) has enabled us to study its reaction mechanism in combination with biochemical analysis. Here we demonstrate that nicotinamide (NA) inhibits DPOR activity by blocking the electron transfer from L-protein to NB-protein. A reaction scheme of DPOR, in which the binding of protochlorophyllide (Pchlide) to the NB-protein precedes the electron transfer from the L-protein, is proposed based on the NA effects.  相似文献   

2.
Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of the two components, L-protein (a ChlL dimer) and NB-protein (a ChlN-ChlB heterotetramer), to catalyze Pchlide reduction in Chl biosynthesis. While nitrogenase is distributed only among certain prokaryotes, the probable structural genes for DPOR are encoded by chloroplast DNA in lower plants. Here we show functional evaluation of DPOR encoded by chloroplast DNA in a moss Physcomitrella patens by the complementation analysis of the cyanobacterium Leptolyngbya boryana and the heterologous reconstitution of the moss L-protein and the cyanobacterial NB-protein. Two shuttle vectors to overexpress chlL and chlN-chlB from P. patens were introduced into the cyanobacterial chlL- and chlB-lacking mutants, respectively. Both transformants restored the ability to perform Chl biosynthesis in the dark, indicating that the chloroplast-encoded DPOR components form an active complex with the cyanobacterial components. The L-protein of P. patens was purified from the cyanobacterial transformant, and DPOR activity was reconstituted in a heterologous combination with the cyanobacterial NB-protein. The specific activity of the L-protein from P. patens was determined to be 118 nmol min(-1) mg (-1), which is even higher than that of the cyanobacterial L-protein (76 nmol min(-1) mg (-1)). Upon exposure to air, the activity of the L-protein from P. patens decayed with a half-life of 30 s, which was eight times faster than that of the cyanobacterial L-protein (240 s). These results suggested that the chloroplast-encoded L-protein functions as efficiently as the cyanobacterial L-protein but is more oxygen labile than the cyanobacterial L-protein.  相似文献   

3.
Nomata J  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2006,580(26):6151-6154
Dark-operative protochlorophyllide reductase (DPOR) in bacteriochlorophyll biosynthesis is a nitrogenase-like enzyme consisting of L-protein (BchL-dimer) as a reductase component and NB-protein (BchN-BchB-heterotetramer) as a catalytic component. Metallocenters of DPOR have not been identified. Here we report that L-protein has an oxygen-sensitive [4Fe-4S] cluster similar to nitrogenase Fe protein. Purified L-protein from Rhodobacter capsulatus showed absorption spectra and an electron paramagnetic resonance signal indicative of a [4Fe-4S] cluster. The activity quickly disappeared upon exposure to air with a half-life of 20s. These results suggest that the electron transfer mechanism is conserved in nitrogenase Fe protein and DPOR L-protein.  相似文献   

4.
Nomata J  Ogawa T  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2008,582(9):1346-1350
Dark-operative protochlorophyllide (Pchlide) oxidoreductase is a nitrogenase-like enzyme consisting of the two components, L-protein (BchL-dimer) and NB-protein (BchN-BchB-heterotetramer). Here, we show that NB-protein is the catalytic component with Fe-S clusters. NB-protein purified from Rhodobacter capsulatus bound Pchlide that was readily converted to chlorophyllide a upon the addition of L-protein and Mg-ATP. The activity of NB-protein was resistant to the exposure to air. A Pchlide-free form of NB-protein purified from a bchH-lacking mutant showed an absorption spectrum suggesting the presence of Fe-S centers. Together with the Fe and sulfide contents, these findings suggested that NB-protein carries two oxygen-tolerant [4Fe-4S] clusters.  相似文献   

5.
Jiro Nomata  Carl E. Bauer 《BBA》2005,1708(2):229-237
Dark-operative protochlorophyllide oxidoreductase (DPOR) plays a crucial role in light-independent (bacterio)chlorophyll biosynthesis in most photosynthetic organisms. However, the biochemical properties of DPOR are still largely undefined. Here, we constructed an overexpression system of two separable components of DPOR, L-protein (BchL) and NB-protein (BchN-BchB), in the broad-host-range vector pJRD215 in Rhodobacter capsulatus. We established a stable DPOR assay system by mixing crude extracts from the two transconjugants under anaerobic conditions. Using this assay system, we demonstrated some basic properties of DPOR. The Km value for protochlorophyllide was 10.6 μM. Ferredoxin functioned as an electron donor to DPOR. Elution profiles in gel filtration chromatography indicated that L-protein and NB-protein are a homodimer [(BchL)2] and a heterotetramer [(BchN)2(BchB)2], respectively. These results provide a framework for the characterization of these components in detail, and further support a nitrogenase model of DPOR.  相似文献   

6.
In most photosynthetic organisms, the chlorin ring structure of chlorophyll a is formed by the reduction of the porphyrin D-ring by the dark-operative nitrogenase-like enzyme, protochlorophyllide reductase (DPOR). Subsequently, the chlorin B-ring is reduced in bacteriochlorophyll biosynthesis to form a bacteriochlorin ring structure. Phenotypic analysis of mutants lacking one of three genes, bchX, bchY, or bchZ, which show significant sequence similarity to the structural genes of nitrogenase, suggests that a second nitrogenase-like enzyme is involved in the chlorin B-ring reduction. However, there is no biochemical evidence for this. Here, we report the reconstitution of chlorophyllide a reductase (COR) with purified proteins. Two Rhodobacter capsulatus strains that overexpressed Strep-tagged BchX and BchY were isolated. Strep-tagged BchX was purified as a single polypeptide, and BchZ was co-purified with Strep-tagged BchY. When BchX and BchY-BchZ components were incubated with chlorophyllide a, ATP, and dithionite under anaerobic conditions, chlorophyllide a was converted to a new pigment with a Qy band of longer wavelength at 734 nm (P734) in 80% acetone. The formation of P734 was dependent on ATP and dithionite. High performance liquid chromatography and mass spectroscopic analysis indicated that P734 is 3-vinyl bacteriochlorophyllide a, which is formed by the B-ring reduction of chlorophyllide a. These results demonstrate that the B-ring of chlorin is reduced by a second nitrogenase-like enzyme and that the sequential actions of two nitrogenase-like enzymes, DPOR and COR, convert porphyrin to bacteriochlorin. The evolutionary implications of nitrogenase-like enzymes to determine the ring structure of (bacterio)chlorophyll pigments are discussed.  相似文献   

7.
During chlorophyll and bacteriochlorophyll biosynthesis in gymnosperms, algae, and photosynthetic bacteria, dark-operative protochlorophyllide oxidoreductase (DPOR) reduces ring D of aromatic protochlorophyllide stereospecifically to produce chlorophyllide. We describe the heterologous overproduction of DPOR subunits BchN, BchB, and BchL from Chlorobium tepidum in Escherichia coli allowing their purification to apparent homogeneity. The catalytic activity was found to be 3.15 nmol min(-1) mg(-1) with K(m) values of 6.1 microm for protochlorophyllide, 13.5 microm for ATP, and 52.7 microm for the reductant dithionite. To identify residues important in DPOR function, 21 enzyme variants were generated by site-directed mutagenesis and investigated for their metal content, spectroscopic features, and catalytic activity. Two cysteine residues (Cys(97) and Cys(131)) of homodimeric BchL(2) are found to coordinate an intersubunit [4Fe-4S] cluster, essential for low potential electron transfer to (BchNB)(2) as part of the reduction of the protochlorophyllide substrate. Similarly, Lys(10) and Leu(126) are crucial to ATP-driven electron transfer from BchL(2). The activation energy of DPOR electron transfer is 22.2 kJ mol(-1) indicating a requirement for 4 ATP per catalytic cycle. At the amino acid level, BchL is 33% identical to the nitrogenase subunit NifH allowing a first tentative structural model to be proposed. In (BchNB)(2), we find that four cysteine residues, three from BchN (Cys(21), Cys(46), and Cys(103)) and one from BchB (Cys(94)), coordinate a second inter-subunit [4Fe-4S] cluster required for catalysis. No evidence for any type of molybdenum-containing cofactor was found, indicating that the DPOR subunit BchN clearly differs from the homologous nitrogenase subunit NifD. Based on the available data we propose an enzymatic mechanism of DPOR.  相似文献   

8.
In vivo genetic engineering by R' plasmid formation was used to isolate an Escherichia coli gene that restored the Ntr+ phenotype to Ntr- mutants of the photosynthetic bacterium Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata; J. F. Imhoff, H. G. Trüper, and N. Pfenning, Int. J. Syst. Bacteriol. 34:340-343, 1984). Nucleotide sequencing of the gene revealed no homology to the ntr genes of Klebsiella pneumoniae. Furthermore, hybridization experiments between the cloned gene and different F' plasmids indicated that the gene is located between 34 and 39 min on the E. coli genetic map and is therefore unlinked to the known ntr genes. The molecular weight of the gene product, deduced from the nucleotide sequence, was 30,563. After the gene was cloned in an expression vector, the gene product was purified. It was shown to have a pI of 5.8 and to behave as a dimer during gel filtration and on sucrose density gradients. Antibodies raised against the purified protein revealed the presence of this protein in R. capsulatus strains containing the E. coli gene, but not in other strains. Moreover, elimination of the plasmid carrying the E. coli gene from complemented strains resulted in the loss of the Ntr+ phenotype. Complementation of the R. capsulatus mutations by the E. coli gene therefore occurs in trans and results from the synthesis of a functional gene product.  相似文献   

9.
纯化的柱孢鱼腥藻铁蛋白能够与棕色固氮菌的钼铁蛋白有效地交叉反应,展现较高的活性。此异源交叉反应的乙炔还原比活及放氢比活,分别是蓝藻同源互补比活的83.8及66.7%。比较藻铁蛋白与菌钼铁蛋白异源交叉反应及藻固氮酶组分之间的同源反应的动力学特点时发现,铁蛋白对钼铁蛋白的最佳克分子比数前者(异源交叉反应)较后者(藻同源反应)为高,前者为5,后者为1;但反应的时间进程两者差别不大。  相似文献   

10.
11.
Cross-linking site in Azotobacter vinelandii complex   总被引:4,自引:0,他引:4  
The Fe-protein and the MoFe-protein of the Azotobacter vinelandii nitrogenase complex can be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (Willing, A., Georgiadis, M.M., Rees, D. C., and Howard, J. B. (1989) J. Biol. Chem. 264, 8499-8503). In this reaction, one of the identical subunits of the Fe-protein dimer is linked by an isopeptide bond to each beta-subunit of the MoFe-protein tetramer. The reaction has been found to be highly specific with greater than 85% of amino acid residues Glu-112 (Fe-protein) and Lys-399 (MoFe-protein) cross-linked to each other. Although Glu-112 is located in a highly conserved amino acid sequence, it is found in only half of the known Fe-protein sequences. Likewise, Lys-399 is not a conserved residue in the MoFe-protein. Glu-112 appears to be part of an anionic cluster of nine carboxylic acids which is located between the proposed thiol ligands for the Fe:S center. In contrast, the basic residue cluster which includes Lys-399 has been found in only in the Azotobacter MoFe-protein. Thus, this crosslinking reaction either is unique to Azotobacter nitrogenase or must involve other residues in the MoFe-protein of other species. Because Lys-399 and Glu-112 form a specific cross-link, it is probable that they are part of the interaction site leading to productive complex formation. This information should be useful for the model building of the complex from the crystallographic structures of the individual components.  相似文献   

12.
13.
The essential gene efg, which complements ammonia-dependent growth (adgA) mutations in Rhodobacter capsulatus and is located at 38.1 min on the Escherichia coli chromosome, was found to code for NH3-dependent NAD synthetase. Crude extracts from a strain which overproduces the efg gene product contained up to 400 times more activity than crude extracts from the control strain, and the purified Efg protein possessed-NH3-dependent NAD synthetase activity. Glutamine-dependent NAD synthetase activity was found in crude extracts of E. coli but not in the purified enzyme, suggesting that it may be catalyzed by an additional subunit. An R. capsulatus strain carrying an adgA mutation was found to be deficient in NAD synthetase activity, and activity was restored by complementation with the E. coli gene. In accordance with the nomenclature proposed for Salmonella typhimurium (K. T. Hughes, B. M. Olivera, and J. R. Roth, J. Bacteriol. 170:2113-2120, 1988), the efg and adgA genes should now be designated nadE.  相似文献   

14.
C Conrad  R Rauhut    G Klug 《Nucleic acids research》1998,26(19):4446-4453
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prerequisite, the question arises what structural features exactly make this extra stem-loop an RNase III cleavage site, distinguishing it from the plethora of stem-loops in 23S rRNA? We used RNase III purified from R.capsulatus and Escherichia coli, respectively, together with well known substrates for E.coli RNase III and RNA substrates derived from the special cleavage site in R.capsulatus 23S rRNA to study the interaction between the Rhodobacter enzyme and the fragmentation site. Although both enzymes are very similar in their amino acid sequence, they exhibit significant differences in binding and cleavage of these in vitro substrates.  相似文献   

15.
Abstract The rpmF-plsX-fabH gene cluster of Rhodobacter capsulatus homologous to that of Escherichia coli was identified. rpmF encodes ribosomal protein L32, plsX plays an undefined role in membrane lipid synthesis, and fabH encodes β-ketoacyl-acyl carrier protein synthase III. The R. capsulatus plsX gene complemented a defect in an E. coli strain with the plsX50 mutation. Overproduction of the fabH gene product of R. capsulatus in E. coli resulted in dramatically increased β-ketoacyl-acyl carrier protein synthase III activity. These results indicate that plsX and fabH apparently function the same in R. capsulatus as in E. coli .  相似文献   

16.
Abstract The nucleotide sequence of the Rhodobacter capsulatus bacterioferritin gene ( bfr ) was determined and found to encode a protein of 161 amino acids with a predicted molecular mass of 18 174 Da. The molecular mass of the purified protein was estimated to be 18 176.06 ± 0.80 Da by electrospray mass spectrometry. The bfr gene was introduced into an expression vector, and bacterioferritin was produced to a high level in Escherichia coli . The amino acids which are involved in haem ligation, and those which provide ligands in the binuclear metal centre in bacterioferritin from E. coli are conserved in the R. capsulatus protein. The sequences of bacterioferritins, ferritin-like proteins, and proteins similar to Dps of E. coli are compared, and membership of the bacterioferritin family re-evaluated.  相似文献   

17.
Rhodobacter capsulatus E1F1 grows phototrophically with nitrate as nitrogen source. Using primers designed for conserved motifs in bacterial assimilatory nitrate reductases, a 450-bp DNA was amplified by PCR and used for the screening of a genomic library. A cosmid carrying an insert with four SalI fragments of 2.8, 4.1, 4.5, and 5.8 kb was isolated, and DNA sequencing revealed that it contains a nitrate assimilation (nas) gene region, including the hcp gene coding for a hybrid cluster protein (HCP). Expression of hcp is probably regulated by a nitrite-sensitive repressor encoded by the adjacent nsrR gene. A His(6)-HCP was overproduced in Escherichia coli and purified. HCP contained about 6 iron and 4 labile sulfide atoms per molecule, in agreement with the presence of both [2Fe-2S] and [4Fe-2S-2O] clusters, and showed hydroxylamine reductase activity, forming ammonia in vitro with methyl viologen as reductant. The apparent K(m) values for NH(2)OH and methyl viologen were 1 mM and 7 microM, respectively, at the pH and temperature optima (9.3 and 40 degrees C). The activity was oxygen-sensitive and was inhibited by sulfide and iron reagents. R. capsulatus E1F1 grew phototrophically, but not heterotrophically, with 1 mM NH(2)OH as nitrogen source, and up to 10 mM NH(2)OH was taken up by anaerobic resting cells. Ammonium was transiently accumulated in the media, and its assimilation was prevented by L-methionine-D,L-sulfoximine, a glutamine synthetase inhibitor. In addition, hydroxylamine- or nitrite-grown cells showed the higher hydroxylamine reductase activities. However, R. capsulatus B10S, a strain lacking the whole hcp-nas region, did not grow with 1 mM NH(2)OH. Also, E. coli cells overproducing HCP tolerate hydroxyl-amine better during anaerobic growth. These results suggest that HCP is involved in assimilation of NH(2)OH, a toxic product that could be formed during nitrate assimilation, probably in the nitrite reduction step.  相似文献   

18.
Xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus catalyzes the hydroxylation of xanthine to uric acid with NAD+ as the electron acceptor. R. capsulatus XDH forms an (alphabeta)2 heterotetramer and is highly homologous to homodimeric eukaryotic xanthine oxidoreductases. Here we first describe reductive titration and steady state kinetics on recombinant wild-type R. capsulatus XDH purified from Escherichia coli, and we then proceed to evaluate the catalytic importance of the active site residues Glu-232 and Glu-730. The steady state and rapid reaction kinetics of an E232A variant exhibited a significant decrease in both kcat and kred as well as increased Km and Kd values as compared with the wild-type protein. No activity was determined for the E730A, E730Q, E730R, and E730D variants in either the steady state or rapid reaction experiments, indicating at least a 10(7) decrease in catalytic effectiveness for this variant. This result is fully consistent with the proposed role of this residue as an active site base that initiates catalysis.  相似文献   

19.
The bacteriochlorophyll biosynthesis gene, bchM, from Rhodobacter capsulatus was previously believed to code for a polypeptide involved in formation of the cyclopentone ring of protochlorophyllide from Mg-protoporphyrin IX monomethyl ester. In this study, R. capsulatus bchM was expressed in Escherichia coli and the gene product was subsequently demonstrated by enzymatic analysis to catalyze methylation of Mg-protoporphyrin IX to form Mg-protoporphyrin IX monomethyl ester. Activity required the substrates Mg-protoporphyrin IX and S-adenosyl-L-methionine. 14C-labeled product was formed in incubations containing 14C-methyl-labeled S-adenosyl-L-methionine. On the basis of these and previous results, we also conclude that the bchH gene, which was previously reported to code for Mg-protoporphyrin IX methyltransferase, is most likely involved in the Mg chelation step.  相似文献   

20.
The Tat system allows the translocation of folded and often cofactor-containing proteins across biological membranes. Here, we show by an interspecies transfer of a complete Tat translocon that Tat systems are largely, but not fully, interchangeable even between different classes of proteobacteria. The Tat apparatus from the alpha-proteobacterium Rhodobacter capsulatus was transferred to a Tat-deficient Escherichia coli strain, which is a gamma-proteobacterium. Similar to that of E. coli, the R. capsulatus Tat system consists of three components, rc-TatA, rc-TatB, and rc-TatC. A fourth gene (rc-tatF) is present in the rc-tatABCF operon which has no apparent relevance for translocation. The translational starts of rc-tatC and rc-tatF overlap in four nucleotides (ATGA) with the preceding tat genes, pointing to efficient translational coupling of rc-tatB, rc-tatC, and rc-tatF. We show by a variety of physiological and biochemical assays that the R. capsulatus Tat system functionally targets the E. coli Tat substrates TorA, AmiA, AmiC, and formate dehydrogenase. Even a Tat substrate from a third organism is accepted, demonstrating that usually Tat systems and Tat substrates from different proteobacteria are compatible with each other. Only one exceptional Tat substrate of E. coli, a membrane-anchored dimethyl sulfoxide (DMSO) reductase, was not targeted by the R. capsulatus Tat system, resulting in a DMSO respiration deficiency. Although the general features of Tat substrates and translocons are similar between species, the data indicate that details in the targeting pathways can vary considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号