首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-protein condensates that give positive and negative psi-type circular dichroism (CD) spectra (psi condensates) bind intercalative and nonintercalative dyes. CD depends both on circular differential scattering and on circular differential absorption; scattering-corrected CD measurements are approximations to circular differential absorption. The circular differential scattering and scattering-corrected CD patterns observed in the DNA absorption band of psi condensates are mimicked in the induced CD band of intercalators bound to psi condensates. The induced scattering-corrected CD and circular differential scattering patterns of the groove-binding dye Hoechst 33342 bound to psi condensates are the inverse of the patterns seen with intercalative dyes, whereas the groove-binding dye manganese(III) meso-tetrakis(4-N-methylpyridyl)porphine [MnIIITMpyP-4] shows no significant induced CD patterns. The large circular differential scattering and scattering-corrected CD bands are interpreted as resulting from long-range chiral packing, rather than near-neighbor short-range interactions. Dyes intercalated into the DNA of the psi condensates have the same type of long-range chiral packing as the DNA bases. Therefore, the psi-type CD spectra seen in the UV spectra originating from the long-range packing of the DNA bases are also observed in the visible spectra when dyes are intercalated in the DNA of the psi condensates. Our interpretation comes from the observation that the induced circular differential scattering and circular differential absorption of the dye bound to the psi condensates depend only upon the sign of the circular differential absorption and the pattern of the circular differential scattering of the psi condensates without bound dye.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The addition of poly(ethylene glycol) (PEG) to a DNA solution induces phase separation of droplets of condensed DNA. These droplets possess liquid crystalline properties and their ordering is cholesteric. It was recently proved that daunomycin, by binding to DNA chains, inverts the long-range chirality of their tertiary packing into aggregates. The present paper suggests one possible mechanism by which this inversion can take place. Daunomycin bears a cationic group in its sugar residue. Its intercalation adds a helicoidal distribution of transverse dipoles to DNA chains. By this mechanism, in favourable cases, ionic or strongly polar groups in drugs which bind DNA can induce handedness inversion of the cholesteric ordering of its condensates. This inversion mechanism was tested experimentally using several, charged and uncharged, homologues of daunomycin. All those bearing the cationic ammonium group inverted the long-range chirality of the PEG-induced DNA mesomorphic state. The effects of the uncharged desamino homologues could not be evaluated because of their lower solubility and binding affinity for DNA.  相似文献   

3.
It is shown by means of circular dichroism studies of variously condensed forms of DNA that the specific supramolecular structure of DNA determines the type of CD spectra. DNA, condensed (crystallized) slowly in the presence of cetyltrimethyl ammonium bromide yields a spectrum very similar to that of DNA in solution in the B-form. The condensates appear in the phase-contrast microscope as spherulitic crystallites. Rapidly condensed DNA in the presence of cetyltrimethyl ammonium bromide shows a spectrum of the psi-type with large negative ellipticites. The influence of condensation velocity upon the supramolecular structure of DNA gives evidence that the various condensation forms of DNA are not thermodynamical equilibrium conformations.  相似文献   

4.
This study represents the first systematic attempt to characterize the possible sources of artifacts that can interfere with the measurement of circular intensity differential scattering (CIDS) as a function of the scattering angle. A theoretical analysis of the effect of imperfect incident circular polarizations in the measurement of baselines from nonchiral scatterers and in the signals from chiral samples is derived. From this analysis the requirements of the tolerance on the quality of the incident circular polarizations to unequivocally measure the CIDS effect are established. The protocol for alignment of the CIDS instrument and the characterization of the incident polarizations utilized in these studies are described in detail. CIDS measurements on suspensions of helical sperm cells are presented. The experimental results are modeled computationally with the use of the current CIDS theory. Good agreement between the data and the computations is obtained. The results clearly indicate the ability of CIDS to provide information on the long-range chiral organization of samples in solution.  相似文献   

5.
The circular dichroism spectra of liquid-crystalline dispersions obtained by phase exclusion of linear double-stranded DNA molecules from aqueous saline solutions of polyethylene glycol (120 ≤ CPEG ≤ 300 mg/mL) have been investigated. The formation of liquid-crystalline dispersions at polyethylene glycol concentrations ranging from 120 to 200 mg/mL was accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism; this is indicative of cholesteric packing of the double stranded DNA molecules in the particles of the dispersion. Liquid-crystalline dispersions formed at PEG concentrations higher than 220 mg/mL and room temperature did not show any abnormal bands in the circular dichroism spectra; this is indicative of hexagonal packing of double-stranded DNA molecules in the particles of the dispersions. Heating of optically inactive liquid crystal dispersions induced a transition of the dispersions into a different state accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism. This transition is considered within the concept of the transformation of a hexagonal packing of DNA molecules into a cholesteric packing. A qualitative mechanism of such a transition is proposed that is formulated in the terms of the “quasinematic” layers of double-stranded DNA molecules that change their spatial orientation under the competing influences of the osmotic pressure of the solvent, orientational elasticity of the cholesteric packing, and thermal fluctuations.  相似文献   

6.
The method of circular dichroism (CD) was used to compare DNA behavior during its interaction with linker histone H1 and with non-histone chromosomal protein HMG1 at different ionic strength and at different protein content in the system. The role of negatively charged C-terminal fragment of HMG1 was analyzed using recombinant protein HMG1-(A + B), which lacks the C terminal amino acid sequence. The psi-type CD spectra were common for DNA interaction with histone H1, but no spectra of this type were observed in HMG1-DNA systems even at high ionic strength. The CD spectrum of the truncated recombinant protein at high salt concentration somewhat resembled the psi-type spectrum. Two very intense positive bands were located near 215 nm and near 273 nm, and the whole CD spectrum was positive. The role of C-terminal tail of HMG1 in formation of the ordered DNA-protein complexes is discussed.  相似文献   

7.
Isolation of LHCII, the light-harvesting chlorophyll a/b complex of photosystem II, based on the procedure described by Krupaet al.(1987,Plant Physiol.84, 19–24), was optimized for obtaining purified lamellar aggregates with long-range chiral order and structural flexibility (the capability of undergoing light-induced reversible structural changes). By varying the concentration of the detergent Triton X-100 for the solubilization of thylakoid membranes, we obtained four types of LHCII aggregates: (i) With low detergent concentration, ≤0.6% (v/v), the aggregates contained lipids in high amount. These preparations with Chl a/b ratios of about 1.4 contained minor antenna complexes with a fingerprint of an additional CD band at (+) 505 nm; they formed disordered lamellae and exhibited no or weak psi-type CD bands (psi, polymerization- or salt-induced), which did not possess the ability to undergo light-induced changes (ΔCD). (ii) At the optimal concentration, around 0.7 ± 0.1% (v/v), the detergent removed some lipids and most of the minor complexes, and the Chl a/b ratio dropped to 1.0–1.1. LHCII formed loosely stacked two-dimensional lamellae which exhibited psi-type CD bands and large light-induced reversible structural changes (ΔCD). (iii) At detergent concentration above the optimum, around 0.8–1% (v/v), the lipid content of LHCII decreased and minor complexes could not be detected. LHCII formed disordered aggregates and showed neither psi-type CD nor ΔCD. (iv) High concentrations (≥1.1% (v/v)) Triton X-100 led to very pure but largely delipidated samples assembled into tightly stacked three-dimensional lamellar structures with intense psi-type CD but no ΔCD.  相似文献   

8.
The derivation of compact expressions of the circular intensity differential scattering (CIDS) of chiral molecules is presented in the first Born approximation of the fields. The expressions derived are valid for a suspension of scattering chiral particles free to adopt any orientation in solution. The connection is established between the preferential scattering cross section for right- vs left-circularly polarized light for a given scattering angle and the geometrical parameters of the molecule. As observed experimentally, the equations predict that the circular differential scattering patterns must show as a function of the scattering angle a series of lobes of alternating sign. In between these lobes, zeros in the differential scattering cross section occur. For the case of two dipole moments arranged in chiral fashion, an expression is derived that shows how the relative arrangement of the dipoles and their separation relative to the wavelength of light control the number and the position of the zeros. A compact expression predicting the CIDS of a sample for very small angles of scattering is derived for a system of helices whose dimensions are small compared with the wavelength of light. Finally, the presence of CIDS in a sample is related to the appearance of anomalous signals in the CD spectrum of chiral systems. Expressions and computations of the magnitudes and sign of the anomalies are presented. The expressions obtained confirm the main features of the experimental CIDS patterns of chiral molecules previously published.  相似文献   

9.
Ethanol precipitated DNA shows a CD spectrum of the +psi-type which is similar to that of DNA in the A-form. DNA condensed with cetyl-trimethylammonium-bromide shows, depending on the condensation velocity, a CD spectrum of the -psi-type, or a CD spectrum only slightly modified from that of DNA in solution. The first spectrum is similar to that of DNA in the C-form, and the second one, to that of DNA in the B-form. Using large-angle X-ray scattering of the three DNA condensates and comparing them with the scattering curves calculated from the atom coordinates for the A-, B-, and C-form of DNA it is shown that the secondary structure of the DNA belongs in all three cases to the B-family. It follows from this result that the secondary structure of DNA alone does not determine the type of CD spectrum. The CD spectrum of condensed DNA is essentially determined by the supramolecular structures of the partially crystalline DNA condensates. These supramolecular structures can be demonstrated by the small-angle X-ray diagrams. The condensation of DNA by ethanol and cetyl-trimethylammonium-bromide proceeds in the form of a partial crystallization of the DNA.  相似文献   

10.
In this research, we observe and rationalize theoretically the transition from hexagonal to cholesteric packing of double-stranded (ds) DNA in dispersion particles. The samples were obtained by phase exclusion of linear ds DNA molecules from water-salt solutions of poly(ethylene glycol)—PEG—with concentrations ranging from 120 mg ml?1 to 300 mg ml?1. In the range of PEG concentrations from 120 mg ml?1 to 220 mg ml?1 at room temperature, we find ds DNA molecule packing, typical of classical cholesterics. The corresponding parameters for dispersion particles obtained at concentrations greater than 220 mg ml?1 indicate hexagonal packing of the ds DNA molecules. However, slightly counter-intuitively, the cholesteric-like packing reappears upon the heating of dispersions with hexagonal packing of ds DNA molecules. This transition occurs when the PEG concentration is larger than 220 mg ml?1. The obtained new cholesteric structure differs from the classical cholesterics observed in the PEG concentration range 120–220 mg ml?1 (hence, the term ‘re-entrant’). Our conclusions are based on the measurements of circular dichroism spectra, X-ray scattering curves and textures of liquid-crystalline phases. We propose a qualitative (similar to the Lindemann criterion for melting of conventional crystals) explanation of this phenomenon in terms of partial melting of so-called quasinematic layers formed by the DNA molecules. The quasinematic layers change their spatial orientation as a result of the competition between the osmotic pressure of the solvent (favoring dense, unidirectional alignment of ds DNA molecules) and twist Frank orientation energy of adjacent layers (favoring cholesteric-like molecular packing).  相似文献   

11.
In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment–pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while “psi-type” CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII.  相似文献   

12.
Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism (CD) spectroscopy, that in Phaeodactylum tricornutum the pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabó et al. Photosynth Res 95:237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436:225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.  相似文献   

13.
Some peculiarities of compactization of double-stranded DNA molecules containing methylated nitrogen bases have been studied in water-salt solutions of PEG. It is shown that the methylation of N7-atoms of guanyl residues in original DNA molecules does not prevent the formation of DNA compact particles, but results in a decrease of the amplitude of the negative band in the CD spectrum of compact particles. The influence of N7-guanine methylation on the shape of the CD spectrum being the greater, the lower is the concentration of PEG. The dependence of the negative band amplitude in the CD spectrum on the content of methylated guanyl residues is practically the same for low-molecular weight DNA's from different sources. The observed decrease in the negative band amplitude is interpreted as a result of alterration of guanyl residue orientation relative to the helix axis which leads to diminished optical activity of the "microcrystalline" domains of compact particles. The evidence obtained suggests that changes in the secondary structure of DNA lead to considerable difference between CD spectra of compact particles of methlated DNA and psi-form of DNA. (The changes in the CD spectrum of the DNA compact particles occur also as a result of methylation of C5-atoms of cytosine residues). It is suggested that the negative band in the CD spectrum can be used a criterion for detection of negligible alterations in the DNA secondary structure.  相似文献   

14.
The circular dichroism (CD) and circular intensity differential scattering (CIDS) contributions to the CD of single Chinese hamster (CHO) cells have been measured as a function of the position in the cell cycle. The data are analyzed in three main spectral regions: (1) the region above 290 nm (scattering region), (2) the 250-290-nm regions (nucleic acid absorption region), and (3) the region below 240 nm (protein absorption region). The results show that CD/CIDS microspectrophotometry is a good indicator of the cell cycle phase. The results are consistent with the view that chromatin is organized in chiral superstructures which differentially scatter circularly polarized light. These structures appear highly specific and repeatable as the cell passes through its cycle.  相似文献   

15.
Poly(dA-dC).poly(dG-dT) was studied by circular dichroism in the presence of high CsCl concentrations and in ethanolic solutions. This alternating purine-pyrimidine duplex may undergo two conformational transitions from a B-type to a novel structure and subsequently into an A-form. Cs+ ions or increasing ethanol concentrations induced a change of the B-type CD spectrum and an inversion of the long wavelength CD band. Lowering the temperature below 0 C or addition of small amounts of Ca++ ions were particularly potent in producing a large negative CD band. A modified B-type structure or a conversion into a left-handed Z-form is considered for this conformational transition.  相似文献   

16.
The aqueous and hydroalcoholic solutions of the heptenic macrolide amphotericin B display strong and variable signals in CD and absorption spectroscopies in the range of the π* ← π transition. An interpretation of the spectroscopic changes is proposed based on the equilibrium between two forms of the intermolecular organization: the aggregated one (A) with strong excitonic interaction and the nonaggregative one (B) whose spectra are like those of linear conjugated polyenes in true solution with a well-developed vibrational structure. The intermediate spectra are fitted by linear combination of the A- and B-form spectra. A two-level organization of the aggregates is proposed for the A-form: (1) a close packing of few molecules, which is the origin of the absorption maxima hypsochromic shift; and (2) interaction between the preceding small units inside the aggregates, which is spectroscopically expressed by the intense CD couplet.  相似文献   

17.
By means of circular dichroism (CD) spectroscopy, we have characterized the organization of the photosynthetic complexes of the diatom Phaeodactylum tricornutum at different levels of structural complexity: in intact cells, isolated thylakoid membranes and purified fucoxanthin chlorophyll protein (FCP) complexes. We found that the CD spectrum of whole cells was dominated by a large band at (+)698 nm, accompanied by a long tail from differential scattering, features typical for psi-type (polymerization or salt-induced) CD. The CD spectrum additionally contained intense (−)679 nm, (+)445 nm and (−)470 nm bands, which were also present in isolated thylakoid membranes and FCPs. While the latter two bands were evidently produced by excitonic interactions, the nature of the (−)679 nm band remained unclear. Electrochromic absorbance changes also revealed the existence of a CD-silent long-wavelength (∼545 nm) absorbing fucoxanthin molecule with very high sensitivity to the transmembrane electrical field. In intact cells the main CD band at (+)698 nm appeared to be associated with the multilamellar organization of the thylakoid membranes. It was sensitive to the osmotic pressure and was selectively diminished at elevated temperatures and was capable of undergoing light-induced reversible changes. In isolated thylakoid membranes, the psi-type CD band, which was lost during the isolation procedure, could be partially restored by addition of Mg-ions, along with the maximum quantum yield and the non-photochemical quenching of singlet excited chlorophyll a, measured by fluorescence transients.  相似文献   

18.
With the aim of investigating the compartmentation of nucleic acids and surfactant aggregates, we have studied the circular dichroic properties of DNA solubilized in reverse micelles. DNA incorporated in AOT/isooctane reverse micelles (AOT=bis-2-ethyl-hexyl sodium sulfosuccinate) assumes an anomalous circular dichroism (CD) spectrum with the characteristic features of a psi spectrum. Older literature observations could therefore be confirmed that attribute these spectral changes to the fact that the reverse micelles induce the formation of a condensed form of DNA. A dynamic light scattering (DLS) characterization of the DNA-containing micellar solutions was carried out, and three populations of aggregates in a polar solvent are observed, with an average radius centered at 5, 100 and 1000 nm, respectively, all three containing DNA. Several forms of DNA, including a plasmid, have been investigated. The formation of 1 microm-large aggregates depends on the DNA concentration and such aggregates disappear in the course of a few hours. Conversely, the 100 nm aggregates are stable for at least 1 day and contain DNA in a normal spectral state at low concentration and in a condensed form-it is the characteristic psi spectrum-in a higher concentration range. The solubilization of DNA in reverse micelles brings about unexpected larger structures in hydrocarbon solution, and whereas the very large component can be with all likelihood be attributed to clusters of smaller reverse micelles, the components at 100 nm radius appear to be a quite stable and characteristic feature of DNA-containing reverse micelles.  相似文献   

19.
Albumin showed very poor affinity for polyethylene glycol molecular weight (Mw) 1000 (30 M(-1)) and Mw 8000 (400 M(-1)) (PEG 1000 and PEG 8000). Polyethylene glycol of low Mw favours the ionization of the tyrosine (TYR) residues of albumin. Such variation might be a consequence of the change in dielectric constant at the domain of the protein by PEG binding. PEGs of high Mws stabilize the native compact state of human albumin showing negative preferential interaction with the protein. Interaction between PEGs and albumin is thermodynamically unfavourable, and becomes even more unfavourable for denatured proteins whose surface areas are larger than those of native ones leading to a stabilization of the unfolded state, which is manifested as a lowering of the thermal transition temperature. PEG 8000 perturbs the structure of the protein surface, partially modifying the layer of water and the microenvironment of the superficial aromatic residues (tryptophan, TRP and TYR) which is in agreement with the modifications of the UV spectrum of albumin by PEG 8000 and circular dichroism (CD) spectrum at high temperatures.  相似文献   

20.
The circular dichroism spectra of Hg(II) complexes with native calf thymus DNA, chemically methylated Streptomyces chrysomallus DNA and with Ag(I)-DNA complexes were measured in the region of 220 - 340 nm. As a main result a conversion of the conservative CD spectrum of DNA to a distinct nonconservative type of CD spectrum for the complexes occurs with increasing Hg(II) concentration. The CD spectra of the Hg(II) complexes as well as some additional arguments strongly support the idea, that DNA in the complex undergoes a structural transition to a more condensed state with 4 -like character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号