首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

2.
Amyloplasts have been isolated from tubers of potato plants (Solarium tuberosum. cv. Desirée). As it is difficult to isolate amyloplasts that have a high starch content, we used transformed plants in which the content of starch was reduced. This was achieved by decreasing the activity of ADP-glucose pyrophosphorylase by antisense techniques (Müller-Röber et al., 1992, EMBO. 11, 1229–1238). In the isolated plastids the activity of glutamine-oxoglutarate-aminotransferase (glutamate synthase, EC 2.6.1.53) was dependent upon the intactness of the plastids. For the supply of redox equivalents the addition of glucose-6-phosphate (Glc6P) was required. Glucose-1-phosphate (Glc1P) did not support glutamate synthesis. Plastids were treated with Triton X-100 and the solubilized proteins reconstituted into liposomes. Transport measurements with these liposomes revealed that inorganic phosphate (Pi), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate and Glc6P are transported in a counter-exchange mode. Transport of phosphoenolpyruvate was low and Glc1P was virtually not transported in exchange for Pi. Kinetic constants were determined for the Pi/Pi and Glc6P/Pi counter exchanges. For comparison, proteins of mitochondria from potato tubers and pea leaves were reconstituted into liposomes. As expected, the Pi/Pi exchange across the mitochondrial membrane was not affected by DHAP and Glc6P. Kinetic constants of the Pi/Pi counter exchange were determined for potato tuber mitochondria.Abbreviations DHAP dihydroxyacetone phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP Phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - Pi inorganic phosphate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl] glycine This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

3.
Phosphoglucomutase (PGM, EC 2.7.5.1) is one of the enzymes constituting the carbohydrate synthesis pathway in higher plants. It catalyzes the reversible conversion of glucose 6-phosphate (Glc6P) to glucose 1-phosphate (Glc1P). Previously, metabolic turnover analysis using (13)CO(2) in tobacco leaves demonstrated that conversion of Glc6P to Glc1P may limit carbon flow into carbohydrate synthesis. In order to assess the effects of PGM, Arabidopsis thaliana cytosolic or plastidial PGM was expressed under the control of cauliflower mosaic virus 35S promoter in tobacco plants (Nicotiana tabacum cv. Xanthi) and phenotypic analysis was performed. The transgenic plants expressing Arabidopsis plastidial PGM showed 3.5-8.2-fold higher PGM activity than that of wild-type, and leaf starch and sucrose contents increased 2.3-3.2-fold and 1.3-1.4-fold, respectively over wild-type levels. In vivo(13)C-labeling experiments indicated that photosynthetically fixed carbon in the transgenic plants could be converted faster to Glc1P and adenosine 5'-diphosphate glucose than in wild-type, suggesting that elevation of plastidial PGM activity should accelerate conversion of Glc6P to Glc1P in chloroplasts and increase carbon flow into starch. On the other hand, transgenic plants expressing Arabidopsis cytosolic PGM showed a 2.1-3.4-fold increase in PGM activity over wild-type and a decrease of leaf starch content, but no change in sucrose content. These results suggest that plastidial PGM limits photosynthetic carbon flow into starch.  相似文献   

4.
6-Phosphoryl-O-alpha-D-glucopyranosyl:6-phosphoglucohydrolase (6-phospho-alpha-glucosidase) has been purified from Fusobacterium mortiferum ATCC 25557. p-Nitrophenyl-alpha-D-glucopyranoside 6-phosphate (pNP alpha Glc6P) served as the chromogenic substrate for detection and assay of enzyme activity. The O2-sensitive, metal-dependent phospho-alpha-glucosidase was stabilized during purification by inclusion of dithiothreitol and Mn2+ ion in chromatography buffers. Various 6-phosphoryl-O-alpha-linked glucosides, including maltose 6-phosphate, pNP alpha Glc6P, trehalose 6-phosphate, and sucrose 6-phosphate, were hydrolyzed by the enzyme to yield D-glucose 6-phosphate and aglycone moieties in a 1:1 molar ratio. 6-Phospho-alpha-glucosidase (M(r) of approximately 49,000; pI of approximately 4.9) is activated by Fe2+, Mn2+, Co2+, and Ni2+, and the maximum rate of pNP alpha Glc6P hydrolysis occurs at 40 degrees C within the pH range 7.0 to 7.5. The sequence of the first 32 amino acids of 6-phospho-alpha-glucosidase exhibits 67% identity (90% similarity) to that deduced for the N terminus of a putative phospho-beta-glucosidase (designated ORF f212) encoded by glvG in Escherichia coli. Western blots involving highly specific polyclonal antibody against 6-phospho-alpha-glucosidase and spectrophotometric analyses with pNP alpha Glc6P revealed only low levels of the enzyme in glucose-, mannose-, or fructose-grown cells of F. mortiferum. Synthesis of 6-phospho-alpha-glucosidase increased dramatically during growth of the organism on alpha-glucosides, such as maltose, alpha-methylglucoside, trehalose, turanose, and palatinose.  相似文献   

5.
The operation of glucose 6-phosphatase (EC 3.1.3.9) (Glc6Pase) stems from the interaction of at least two highly hydrophobic proteins embedded in the ER membrane, a heavily glycosylated catalytic subunit of m 36 kDa (P36) and a 46-kDa putative glucose 6-phosphate (Glc6P) translocase (P46). Topology studies of P36 and P46 predict, respectively, nine and ten transmembrane domains with the N-terminal end of P36 oriented towards the lumen of the ER and both termini of P46 oriented towards the cytoplasm. P36 gene expression is increased by glucose, fructose 2,6-bisphosphate (Fru-2,6-P2) and free fatty acids, as well as by glucocorticoids and cyclic AMP; the latter are counteracted by insulin. P46 gene expression is affected by glucose, insulin and cyclic AMP in a manner similar to P36. Accordingly, several response elements for glucocorticoids, cyclic AMP and insulin regulated by hepatocyte nuclear factors were found in the Glc6Pase promoter. Mutations in P36 and P46 lead to glycogen storage disease (GSD) type-1a and type-1 non a (formerly 1b and 1c), respectively. Adenovirus-mediated overexpression of P36 in hepatocytes and in vivo impairs glycogen metabolism and glycolysis and increases glucose production; P36 overexpression in INS-1 cells results in decreased glycolysis and glucose-induced insulin secretion. The nature of the interaction between P36 and P46 in controling Glc6Pase activity remains to be defined. The latter might also have functions other than Glc6P transport that are related to Glc6P metabolism.  相似文献   

6.
The Fusobacterium mortiferum malH gene, encoding 6-phospho-alpha-glucosidase (maltose 6-phosphate hydrolase; EC 3.2.1.122), has been isolated, characterized, and expressed in Escherichia coli. The relative molecular weight of the polypeptide encoded by malH (441 residues; Mr of 49,718) was in agreement with the estimated value (approximately 49,000) obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the enzyme purified from F. mortiferum. The N-terminal sequence of the MalH protein obtained by Edman degradation corresponded to the first 32 amino acids deduced from the malH sequence. The enzyme produced by the strain carrying the cloned malH gene cleaved [U-14C]maltose 6-phosphate to glucose 6-phosphate (Glc6P) and glucose. The substrate analogs p-nitrophenyl-alpha-D-glucopyranoside 6-phosphate (pNP alphaGlc6P) and 4-methylumbelliferyl-alpha-D-glucopyranoside 6-phosphate (4MU alphaGlc6P) were hydrolyzed to yield Glc6P and the yellow p-nitrophenolate and fluorescent 4-methylumbelliferyl aglycons, respectively. The 6-phospho-alpha-glucosidase expressed in E. coli (like the enzyme purified from F. mortiferum) required Fe2+, Mn2+, Co2+, or Ni2+ for activity and was inhibited in air. Synthesis of maltose 6-phosphate hydrolase from the cloned malH gene in E. coli was modulated by addition of various sugars to the growth medium. Computer-based analyses of MalH and its homologs revealed that the phospho-alpha-glucosidase from F. mortiferum belongs to the seven-member family 4 of the glycosylhydrolase superfamily. The cloned 2.2-kb Sau3AI DNA fragment from F. mortiferum contained a second partial open reading frame of 83 residues (designated malB) that was located immediately upstream of malH. The high degree of sequence identity of MalB with IIB(Glc)-like proteins of the phosphoenol pyruvate dependent:sugar phosphotransferase system suggests participation of MalB in translocation of maltose and related alpha-glucosides in F. mortiferum.  相似文献   

7.
The archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN, EC 1.2.1.9) is a highly allosteric enzyme activated by glucose 1-phosphate (Glc1P). Recent kinetic analyses of two GAPN homologs from Sulfolobales show different allosteric behaviors toward the substrate glyceraldehyde-3-phosphate (GAP) and the allosteric effector Glc1P. In GAPN from Sulfolobus tokodaii (Sto-GAPN), Glc1P-induced activation follows an increase in affinity for GAP rather than an increase in maximum velocity, whereas in GAPN from Sulfolobus solfataricus (Sso-GAPN), Glc1P-induced activation follows an increase in maximum velocity rather than in affinity for GAP. To explore the molecular basis of this difference between Sto-GAPN and Sso-GAPN, we generated 14 mutants and 2 chimeras. The analyses of chimeric GAPNs generated from regions of Sto-GAPN and Sso-GAPN indicated that a 57-residue module located in the subunit interface was clearly involved in their allosteric behavior. Among the point mutations in this modular region, the Y139R variant of Sto-GAPN no longer displayed a sigmoidal K-type-like allostery, but instead had apparent V-type allostery similar to that of Sso-GAPN, suggesting that the residue located in the center of the homotetramer critically contributes to the allosteric behavior.  相似文献   

8.
The provision of carbon substrates and reducing power for fatty acid synthesis in the heterotrophic plastids of developing embryos of sunflower (Helianthus annuus L.) has been investigated. Profiles of oil and storage protein accumulation were determined and embryos at 17 and 24 days after anthesis (DAA) were selected to represent early and late periods of oil accumulation. Plastids isolated from either 17 or 24 DAA embryos did not incorporate label from [1-(14)C]glucose 6-phosphate (Glc6P) into fatty acids. Malate, when supplied alone, supported the highest rates of fatty acid synthesis by the isolated plastids at both stages. Pyruvate supported rates of fatty acid synthesis at 17 DAA that were comparable to those supported by malate, but only when incubations also included Glc6P. The stimulatory effect of Glc6P on pyruvate utilization at 17 DAA was related to the rapid utilization of Glc6P through the oxidative pentose phosphate pathway (OPPP) at this stage. Addition of pyruvate to incubations containing [1-(14)C]Glc6P increased OPPP activity (measured as (14)CO(2) release), while the addition of malate suppressed it. Observations of the interactions between the rate of metabolite utilization for fatty acid synthesis and the rate of the OPPP are consistent with regulation of the OPPP by redox control of the plastidial glucose 6-phosphate dehydrogenase activity through the demand for NADPH. During pyruvate utilization for fatty acid synthesis, flux through the OPPP increases as NADPH is consumed, whereas during malate utilization, in which NADPH is produced by NADP-malic enzyme, flux through the OPPP is decreased.  相似文献   

9.
Inhibition of bovine brain hexokinase by its product, glucose 6-phosphate, is considered to be a major regulatory step in controlling the glycolytic flux in the brain. Investigations on the molecular basis of this regulation, i.e. allosteric or product inhibition, have led to various proposals. Here, we attempt to resolve this issue by ascertaining the location of the binding sites for glucose and glucose 6-phosphate on the enzyme with respect to a divalent-cation-binding site characterized previously [Jarori, G. K., Kasturi, S. R. & Kenkare, U. W. (1981) Arch. Biochem. Biophys. 211, 258-268]. The paramagnetic effect of enzyme-bound Mn(II) on the spin-lattice relaxation rates (T-1(1] of ligand nuclei (1H and 31P) in E.Mn(II).Glc and E.Mn(II).Glc6P complexes have been measured. The paramagnetic effect of Mn(II) on the proton relaxation rates of C1-H alpha, C1-H beta and C2-H beta of glucose in the E.Mn(II).Glc complex was measured at 270 MHz and 500 MHz. The temperature dependence of these rates was also studied in the range of 5-30 degrees C at 500 MHz. The ligand nuclear relaxation rates in E.Mn(II).Glc are field-dependent and the Arrhenius plot yields an activation energy (delta E) of 16.7-20.9 kJ/mol. Similar measurements have also been carried out on C1-H alpha, C1-H beta and C6-31P at 270 MHz (1H) and 202.5 MHz (31P) for the E.Mn(II).Glc6P complex. The temperature dependence of 31P relaxation rates in this complex was measured in the range 5-30 degrees C, which yielded delta E = 9.2 kJ/mol. The electron-nuclear dipolar correlation time (tau c), determined from the field-dependent measurements of proton relaxation rates in the E.Mn(II).Glc complex, is 0.22-1.27 ns. The distances determined between Mn(II) and C1-H of glucose and glucose 6-phosphate are approximately 1.1 nm and approximately 0.8 nm, respectively. These data, considered together with our recent results [Mehta, A., Jarori, G. K. & Kenkare, U. W. (1988) J. Biol. Chem. 263, 15492-15498], suggest that glucose and glucose 6-phosphate may bind to very nearly the same region of the enzyme. The structure of the binary Glc6P.Mn(II) complex has also been determined. The phosphoryl group of the sugar phosphate forms a first co-ordination complex with the cation. However, on the enzyme, the phosphoryl group is located at a distance of approximately 0.5-0.6 nm from the cation.  相似文献   

10.
Plastids have been isolated from pea (Pisum sativum L.) roots with a high degree of purity and intactness. In these plastids, the activity of enzymes involved in carbohydrate metabolism have been analyzed and corrected for cytosolic contamination. The results show that fructose-1,6-bisphosphatase, NAD-glyceraldehyde phosphate dehydrogenase, and phosphoglyceromutase are not present in pea root plastids. Transport measurements revealed that inorganic phosphate, dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and glucose-6-phosphate (Glc6p) are transported across the envelope in a counterexchange mode. Transport of glucose-1-phosphate was definitely excluded. The oxidation of Glc6P by intact plastids resulted almost exclusively in the formation of DHAP. The parallel measurement of DHAP formation and NO2- consumption during Glc6P-supported nitrite reduction yielded a ratio of NO2-reduced/DHAP formed of 1.6, which is relatively close to the theoretical value of 2.0. These results show that the oxidation of Glc6P, involving the uptake of Glc6P and the release of DHAP, and the reduction of NO2- are very tightly coupled to each other.  相似文献   

11.
Starch synthesis and CO2 evolution were determined after incubating intact and lysed wheat (Triticum aestivum L. cv. Axona) endosperm amyloplasts with 14C-labelled hexose-phosphates. Amyloplasts converted [U-14C]glucose 1-phosphate (Glc1P) but not [U-14C]glucose 6-phosphate (Glc6P) into starch in the presence of ATP. When the oxidative pentose-phosphate pathway (OPPP) was stimulated, both [U-14C]Glc1P and [U-14C]Glc6P were metabolized to CO2, but Glc6P was the better precursor for the OPPP, and Glc1P-mediated starch synthesis was reduced by 75%. In order to understand the basis for the partitioning of carbon between the two potentially competing metabolic pathways, metabolite pools were measured in purified amyloplasts under conditions which promote both starch synthesis and carbohydrate oxidation via the OPPP. Amyloplasts incubated with Glc1P or Glc6P alone showed little or no interconversion of these hexose-phosphates inside the organelle. When amyloplasts were synthesizing starch, the stromal concentrations of Glc1P and ADP-glucose were high. By contrast, when flux through the OPPP was highest, Glc1P and ADP-glucose inside the organelle were undetectable, and there was an increase in metabolites involved in carbohydrate oxidation. Measurements of the plastidial hexose-monophosphate pool during starch synthesis and carbohydrate oxidation indicate that the phosphoglucose isomerase reaction is at equilibrium whereas the reaction catalysed by phosphoglucomutase is significantly displaced from equilibrium. Received: 29 March 1997 / Accepted: 5 June 1997  相似文献   

12.
The quantification of phosphate bound to the C6 and C3 positions of glucose residues in starch has received increasing interest since the importance of starch phosphorylation for plant metabolism was discovered. The method described here is based on the observation that the isobaric compounds glucose-6-phosphate (Glc6P) and glucose-3-phosphate (Glc3P) exhibit significantly different fragmentation patterns in negative ion electrospray tandem mass spectrometry (MS/MS). A simple experiment involving collision-induced dissociation (CID) MS2 spectra of the sample and the two reference substances Glc3P and Glc6P permitted the quantification of the relative amounts of the two compounds in monosaccharide mixtures generated by acid hydrolysis of starch. The method was tested on well-characterized potato tuber starch. The results are consistent with those obtained by NMR analysis. In contrast to NMR, however, the presented method is fast and can be performed on less than 1 mg of starch. Starch samples of other origins exhibiting a variety of phosphorylation degrees were analyzed to assess the sensitivity and robustness of the method.  相似文献   

13.
Plasmodium falciparum glucose 6-phosphate dehydrogenase (Pf Glc6PD), compared to other Glc6PDs has an additional 300 amino acids at the N-terminus. They are not related to Glc6PD but are similar to a family of proteins (devb) of unknown function, some of which are encoded next to Glc6PD in certain bacteria. The human devb homologue has recently been shown to have 6-phosphogluconolactonase (6PGL) activity. This suggests Pf Glc6PD may be a bifunctional enzyme, the evolution of which has involved the fusion of adjacent genes. Further functional analysis of Pf Glc6PD has been hampered because parts of the gene could not be cloned. We have isolated and sequenced the corresponding Plasmodium berghei gene and shown it encodes an enzyme (Pb Glc6PD) with the same structure as the P. falciparum enzyme. Pb Glc6PD is 950 amino acids long with significant sequence similarity in both the devb and Glc6PD domains with the P. falciparum enzyme. The P. berghei enzyme does not have an asparagine-rich segment between the N and C halves and it contains an insertion at the same point in the Glc6PD region as the P. falciparum enzyme but the insertion in the P. berghei is longer (110 versus 62 amino acids) and unrelated in sequence to the P. falciparum insertion. Though expression of this enzyme in bacteria produced largely insoluble protein, conditions were found where the full-length enzyme was produced in a soluble form which was purified via a histidine tag. We show that this enzyme has both Glc6PD and 6PGL activities. Thus the first two steps of the pentose phosphate pathway are catalysed by a single novel bifunctional enzyme in these parasites.  相似文献   

14.
Walter Eschrich 《Planta》1984,161(2):113-119
Mature leaf blades of 48-h predarkened maize plants (Zea mays L. cv. Prior) were excised, and treated apically as the source (light, normal air) and basally as the sink (light or dark, air without CO2). After providing the source portion with 14CO2, the sink portions were harvested after 2, 7 or 14 h by freezing with liquid nitrogen, grinding, and freeze-drying. Extracts, fractionated by ionexchange resins into neutral, basic and acid fractions, were chromatographed on thin cellulose layers, and autoradiographed. Identification of labeled compounds was carried out by co-chromatography with authentic labeled substances. Activities of enzymes pertaining to the metabolism of sucrose were checked. Results show that the source supplies sucrose to the sink, where it is unloaded and metabolized by acid invertase (EC 3.2.1.26) in both the light and the dark. Starch appearing in the sink only in the light, after 7 h of re-illumination, yields labeled glucose upon hydrolysis. Although sucrose-phosphate synthetase (EC 2.4.1.14) is active in sinks and in isolated vascular-bundle fragments, it remains questionable whether sucrose unloaded from sieve tubes is metabolized by a method other than inversion. Sucrose synthetase (EC 2.4.1.13) was found to be inactive. Obviously, the main metabolite of unloaded sucrose is glucose-6-phosphate, giving access to the glycolytic pathway. The main difference between the sinks in the light and the dark is the lack of labeled glycine and serine in the dark. This indicates that in the light decarboxylation of glycine yields CO2, which is recycled photosynthetically.Abbrevations Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - TLC thin-layer chromatography - UDPGlc uridine 5-diphosphate glucose  相似文献   

15.
The rates of incorporation of various metabolites into starch by isolated amyloplasts from developing endosperm of spring wheat (Triticum aestivum L. cv. Axona) were examined. Of the metabolites tested that were likely to be present in the cytosol at concentrations sufficient to sustain starch synthesis, only glucose 1-phosphate (Glc1P) supported physiologically relevant rates of starch synthesis. Incorporation of Glc1P into starch was both dependent on the presence of ATP and intact organelles. The rate of incorporation of hexose into starch became saturated at a Glc1P concentration of less than 1 mol·m-3 in the presence of 1 mol·m-3 ATP. Starch synthesis from 5 mol · m-3 ADP-glucose supplied to the organelles occurred at rates 15-fold higher than from similar concentrations of Glc1P, but it is argued that this is probably of little physiological relevance. The net incorporation of hexose units into starch from GlclP was inhibited 50% by 100 mmol.m-3 carboxyatractyloside. Carbohydrate oxidation in the amyloplast was stimulated by the addition of 2-oxoglutarate and glutamine, and in such circumstances incorporation of14C-labelled metabolites into starch was reduced. Glucose 6-phosphate proved to be a better substrate for oxidative pathways than Glc1P. Our results suggest that Glc1P is the primary substrate for starch synthesis in developing wheat endosperm, and that ATP required for starch synthesis is imported via an adenylate translocator.  相似文献   

16.
Pharmacological activation or overexpression of glucokinase in hepatocytes stimulates glucose phosphorylation, glycolysis and glycogen synthesis. We used an inhibitor of glucose 6-phosphate (Glc6P) hydrolysis, namely the chlorogenic derivative, 1-[2-(4-chloro-phenyl)-cyclopropylmethoxy]-3, 4-dihydroxy-5-(3-imidazo[4,5-b]pyridin-1-yl-3-phenyl-acryloyloxy)-cyclohexanecarboxylic acid (also known as S4048), to determine the contribution of Glc6P concentration, as distinct from glucokinase protein or activity, to the control of glycolysis and glycogen synthesis by glucokinase overexpression. The validity of S4048 for testing the role of Glc6P was supported by its lack of effect on glucokinase binding and its nuclear/cytoplasmic distribution. The stimulation of glycolysis by glucokinase overexpression correlated strongly with glucose phosphorylation, whereas glycogen synthesis correlated strongly with Glc6P concentration. Metabolic control analysis was used to determine the sensitivity of glycogenic flux to glucokinase or Glc6P at varying glucose concentrations (5-20 mm). The concentration control coefficient of glucokinase on Glc6P (1.4-1.7) was relatively independent of glucose concentration, whereas the flux control coefficients of Glc6P (2.4-1.0) and glucokinase (3.7-1.8) on glycogen synthesis decreased with glucose concentration. The high sensitivity of glycogenic flux to Glc6P at low glucose concentration is consistent with covalent modification by Glc6P of both phosphorylase and glycogen synthase. The high control strength of glucokinase on glycogenic flux is explained by its concentration control coefficient on Glc6P and the high control strength of Glc6P on glycogen synthesis. It is suggested that the regulatory strength of pharmacological glucokinase activators on glycogen metabolism can be predicted from their effect on the Glc6P content.  相似文献   

17.
Two different isoforms of glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) have been partially purified from barley (Hordeum vulgare L., cv. Alfeo) roots. The procedure included an ammonium sulfate step, Q-Sepharose and Reactive Blue agarose chromatography, and led to 60-fold and 150-fold purification for the two enzymes, respectively. The Glc6PDH 1 isoform accounts for 17% of total activity of the enzyme in roots, and is very sensitive to the effects of NADP+/NADPH ratio and dithiothreitol; the Glc6PDH 2 isoform is less affected by reducing power and represents 83% of the total activity. The isoforms showed distinct pH optima, isoelectric points, K m for glucose-6-phosphate and a different electrophoretic mobility. The kinetic properties for the two enzymes were affected by ATP and metabolites. Both enzymes are inhibited to different extents by ATP when magnesium is omitted from the assay mixture, whereas the addition of ATP-Mg2+ had no effect on Glc6PDH activities. The Glc6PDH isoforms are usually present in the plastids and cytosol of plant cells. To verify the intracellular locations of the enzymes purified from barley roots, Glc6PDH was purified from isolated barley root plastids; this isoform showed kinetic parameters coincident with those found for Glc6PDH 1, suggesting a plastid location; the enzyme purified from the soluble fraction had kinetic parameters resembling those of Glc6PDH 2, confirming that this isoform is present in the cytosol of barley roots. Received: 21 June 2000 / Accepted: 28 July 2000  相似文献   

18.
In plant cells, the reversible isomerization between fructose 6-phosphate (Fru6P) and glucose 6-phosphate (Glc6P) is catalyzed by a cytosolic and a chloroplastic isoenzyme of phosphoglucose isomerase (PGI, EC 5.3.1.9). The extractable activities of both PGI isoenzymes are in large excess compared with the flux required for product synthesis, but the measured Glu6P/Fru6P ratio in illuminated chloroplasts and in whole leaves is always displaced from equilibrium. Cytosolic (PGI 2) and stromal (PGI 1) isoenzymes were purified from spinach leaves and used to investigate the possibility of metabolic regulation at this step. Several metabolites were found to inhibit PGI, but within the physiological concentration range, only erythrose 4-phosphate (Ery4P) inhibited significantly. The inhibition was competitive, with Ki values below 10 μM for PGI 2 and 1. The physiological significance of the inhibition of PGI by Ery4P was assessed in isolated intact spinach chloroplasts. We conclude that, in vivo, this inhibition is probably responsible for the observed displacement from equilibrium in the chloroplasts, but limits the carbon flow towards starch synthesis only when Fru6P is low. In contrast, the inhibition by Ery4P is unlikely to play any role in the cytosolic carbon metabolism because both Fru6P concentration and PGI activity, are much higher than in the chloroplast stroma.  相似文献   

19.
Rumen bacterium Pseudobutyrivibrio ruminis strain k3 utilized over 90 % sucrose added to the growth medium as a sole carbon source. Zymographic studies of the bacterial cell extract revealed the presence of a single enzyme involved in sucrose digestion. Thin layer chromatography showed fructose and glucose-1-phosphate (Glc1P) as end products of the digestion of sucrose by identified enzyme. The activity of the enzyme depended on the presence of inorganic phosphate and was the highest at the concentration of phosphate 56 mmol/L. The enzyme was identified as the sucrose phosphorylase (EC 2.4.1.7) of molar mass ≈54 kDa and maximum activity at pH 6.0 and 45 °C. The calculated Michaelis constant (K m) for Glc1P formation and release of fructose by partially purified enzyme were 4.4 and 8.56 mmol/L while the maximum velocities of the reaction (v lim) were 1.19 and 0.64 μmol/L per mg protein per min, respectively.  相似文献   

20.
The glucose-6-phosphate (Glc6P) and 6-phosphogluconate (6PG) dehydrogenases of the amino-acid-producing bacterium Corynebacterium glutamicum were purified to homogeneity and kinetically characterized. The Glc6P dehydrogenase was a heteromultimeric complex, which consists of Zwf and OpcA subunits. The product inhibition pattern of the Glc6P dehydrogenase was consistent with an ordered bi-bi mechanism. The 6PG dehydrogenase was found to operate according to a Theorell-Chance ordered bi-ter mechanism. Both enzymes were inhibited by NADPH and the 6PG dehydrogenase additionally by ATP, fructose 1,6-bisphosphate (Fru1,6P2), D-glyceraldehyde 3-phosphate (Gra3P), erythrose 4-phosphate and ribulose 5-phosphate (Rib5P). The inhibition by NADPH was considered to be most important, with inhibition constants of around 25 microM for both enzymes. Intracellular metabolite concentrations were determined in two isogenic strains of C. glutamicum with plasmid-encoded NAD- and NADP-dependent glutamate dehydrogenases. NADP+ and NADPH levels were between 130 microM and 290 microM, which is very much higher than the respective Km and Ki values. The Glc6P concentration was around 500 microM in both strains. The in vivo fluxes through the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified enzymes determined in vitro were in agreement with the same fluxes determined by NMR after 13C-labelling. From the derived kinetic model thus validated, it is concluded that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH and NADP+ concentrations and the specific enzyme activities of both dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号