首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP content, adenylate cyclase (EC 4.6.1.1) activity and phosphodiesterase I (EC 3.1.4.1) activity of the hind leg skeletal muscle and cardiac muscle in 60- and 150-day-old normal and myopathic (UM-X7.1) hamsters were examined. In 60-day-old myopathic animals, cardiac cyclic AMP levels were higher and phosphodiesterase I activity was lower, without any changes in the basal adenylate cyclase activity, whereas in 150-day-old myopathic hamsters, cardiac cyclic AMP and basal adenylate cyclase activity were lower, without any changes in the homogenate phosphodiesterase I activity. On the other hand, basal adenylate cyclase and phosphodiesterase I activities in the skeletal muscle homogenate from 60- and 150-day-old myopathic animals were not different from the normal values but the skeletal muscle cyclic AMP levels were significantly less in 60-day-old myopathic hamsters only. The plasma cyclic AMP levels in 60-day-old myopathic hamsters, unlike 150-day-old myopathic animals, were higher than the normal. Although these results reveal differences in myopathic cardiac and skeletal muscles, it is concluded that changes in adenylate cyclase-cyclic AMP system in myopathy are dependent upon the degree of disease.  相似文献   

2.
The level of adenosine 3',5'-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0 X 10(-7)M and 1.5 X 10(-6)M, respectively. The activity of adenylate cyclase in a 105 000 X g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5 X 10(-6)M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

3.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

4.
5.
Antibodies raised in mice against β-adrenergic receptors purified from turkey erythrocyte membranes, specifically bind to cells which possess a β-adrenergic receptor and immunoprecipitate radiolabelled purified receptor. These antibodies stimulate the adenylate cyclase activity of the turkey erythrocytes, although they do not compete with the catecholamine hormones for binding to the β-adrenergic receptor. Thus the receptor-antibody interaction, although occuring at another site than the receptor-hormone interaction, may still trigger the enzymatic activity.  相似文献   

6.
Cationized ferritin was found to inhibit the lateral mobility of intramembrane proteins in turkey erythrocyte membranes and the activation of adenylate cyclase by the (?)-epinephrine-bound β-adrenergic receptor. It was observed that cationized ferritin has only a small direct effect on the β-receptor and on the adenylate cyclase moiety. It is concluded that the cationized ferritin-induced inhibition of the hormone-dependent cyclase activity results from the inhibition of the lateral mobility of the receptor and therefore a decrease in the bimolecular rate of interaction between the receptor and the enzyme.  相似文献   

7.
Treatment of hepatocytes with islet activating protein (pertussis toxin) from Bordetella pertussis blocked the ability of insulin to inhibit adenylate cyclase activity both in broken plasma membranes and in intact hepatocytes. Such treatment of intact hepatocytes with pertussis toxin did not prevent insulin from activating the peripheral plasma membrane cyclic AMP phosphodiesterase although it did inhibit the ability of insulin to activate the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of glucagon pretreatment of hepatocytes to block insulin's activation of the plasma membrane cyclic AMP phosphodiesterase was abolished in pertussis toxin-treated hepatocytes. It is suggested that the ability of insulin to manipulate cyclic AMP concentrations by inhibiting adenylate cyclase and activating the plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases involves interactions with the guanine nucleotide regulatory protein system occurring in liver plasma membranes.  相似文献   

8.
Effects of morphine administration were studied on cyclic AMP metabolism in several regions of rat brain. In the cortex, cerebellum and thalamus-hypothalamus, morphine dependence did not alter the activity of either adenylate cyclase or phosphodiesterase. However, during withdrawal from the opiate treatment, adenylate cyclase activity declined in all three regions studied. In contrast, the striatal cyclic AMP metabolism was enhanced during morphine treatment as reflected by elevated endogenous cyclic AMP and increased adenylate cyclase. Furthermore, narcotic dependence produced significant increases in acetylcholinesterase activity of rat striatum. Whereas morphine withdrawal reversed the changes in striatal acetylcholine levels and acetylcholinesterase activity, the enhanced striatal dopamine remained unaltered. Although the activity of striatal adenylate cyclase was significantly reduced when compared to the morphine-dependent rats, the drop in cyclic AMP levels was not significant. Methadone replacement did not affect the changes in striatal dopamine seen in morphine-withdrawn rats. Whereas dopamine stimulated equally well the striatal adenylate cyclase from control or morphine-dependent animals, it failed to stimulate the striatal enzyme from rats undergoing withdrawal. The crude synaptosomal fraction of the whole brain from morphine-dependent rats exhibited an increase in cyclic AMP which was accompanied by elevated adenylate cyclase and protein kinase activity. Naloxone administration suppressed this rise in cyclic AMP and reversed the morphine-stimulated increases in the activities of adenylate cyclase and protein kinase. Following the withdrawal of morphine treatment, alterations in cyclic AMP metabolism were similar to those noted in morphine-naloxone group. Furthermore, substitution of morphine with methadone antagonized the observed alterations in cyclic nucleotide metabolism during withdrawal.  相似文献   

9.
Treatment of cultured SV40-transformed normal rat kidney cells with the drug, 2-pyridine carboxylic acid, results in a pronounced potentiation in the ability of isoproterenol, prostaglandin E1, and cholera toxin to elevate cyclic AMP levels. With isoproterenol, the initial rate of cyclic AMP accumulation and the maximum cyclic AMP attainable are increased, and also the time of maximum cyclic AMP is prolonged. GTP-dependent adenylate cyclase activities are potentiated in crude membranes from the treated cells, but no evidence for alterations in cyclic nucleotide phosphodiesterase or release of cyclic AMP into the medium could be demonstrated. Results show that augmented adenylate cyclase activity alone, without changes in phosphodiesterase, can lead to dramatic alterations in cyclic AMP accumulation in response to cyclase agonists.  相似文献   

10.
Using purified rat ventricular myocytes and membranes prepared from them, we have previously found that alpha 1-adrenergic stimulation causes decreased cyclic AMP accumulation and decreased activation of cyclic AMP-dependent protein kinase. We have now analyzed the mechanism by which alpha 1 stimulation is linked to cyclic AMP metabolism. In an adenylate cyclase assay in which carbachol inhibits the stimulatory effect of norepinephrine, the addition of prazosin (alpha 1-antagonist) has no effect on the response to norepinephrine. In membranes prepared from myocytes treated with pertussis toxin, norepinephrine competes for alpha 1-receptors (assessed by [3H]prazosin binding) with two components, binding to the high affinity component being sensitive to exogenous GTP, exactly as in membranes prepared from control myocytes. In intact cells labeled with [3H]adenine in which carbachol antagonizes the norepinephrine response, prazosin enhances accumulation of [3H]cyclic AMP due to norepinephrine. Treatment of cells with pertussis toxin eliminates inhibition by carbachol but does not alter prazosin's capacity to enhance the norepinephrine response. Addition of phosphodiesterase inhibitors eliminates this effect of alpha 1 blockade. In [3H]adenine-labeled cells loaded with [3H]cyclic AMP by prior treatment with isoproterenol, alpha 1-adrenergic stimulation enhances disappearance of [3H]cyclic AMP. Measurements of cellular cyclic AMP give results similar to those obtained with the adenine labeling technic. We conclude that occupation of the myocyte alpha 1-receptor results in stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

11.
M Zatz 《Life sciences》1977,21(9):1267-1276
Cholera toxin, which activates adenylate cyclase by a mechanism independent of the β-adrenergic receptor, induced more N-acetyltransferase activity in supersensitive than in subsensitive rat pineal glands. This was due to an increased response in supersensitive glands, of several of the components involved in the induction. Although there was no difference in the number of binding sites for cholera toxin, there was more toxin-stimulated adenylate cyclase activity in the supersensitive glands. There was also a larger accumulation of cyclic AMP and a greater stimulation of protein kinase activity in the supersensitive glands. It is inferred that changes in the number of β-adrenergic binding sites are not the primary basis for changes in sensitivity. Rather, there are multiple sites of regulation, possibly affected by a common mechanism.  相似文献   

12.
Carbachol antagonizes isoproterenol-stimulable cyclic AMP accumulation in mouse atria by direct activation of cardiac muscarinic receptors. Inhibition by carbachol occurs rapidly and is completely reversed when the drug is removed. Neither nitroprusside nor 8-bromo-cyclic GMP mimics the actions of carbachol and low concentrations of carbachol block cyclic AMP accumulation without increasing the intracellular cyclic GMP content. Carbachol does not block cyclic AMP accumulation by activating phosphodiesterase since it is fully effective in the face of marked phosphodiesterase inhibition, nor does it appear to inhibit the catalytic activity of adenylate cyclase since it does not decrease either basal or cholera toxin-stimulated cyclic AMP accumulation. The interaction between carbachol and isoproterenol is not competitive, since cholinergic inhibition cannot be surmounted by increasing concentrations of isoproterenol. The site of muscarinic action therefore appears to involve the mechanisms coupling the hormone-receptor complex to adenylate cyclase. This site is distinct from that of cholera toxin action since there is no antagonism between the effects of cholera toxin and carbachol on cyclic AMP metabolism in the atrium.  相似文献   

13.
The level of adenosine 3′,5′-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0·10?7 M and 1.5·10?6 M, respectively. The activity of adenylate cyclase in a 105 000 × g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5·10?6 M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

14.
Cyclic AMP levels in rat lungs showed phasic elevations which peaked during fetal, neonatal and late postnatal periods of development. Lung phospholipids showed major alterations in their levels during fetal and early neonatal life. Alterations in glycogen levels were accompanied by parallel changes in phosphorylase a/total phosphorylase activity which may be related to changes in cyclic AMP during development. Cyclic AMP levels were dependent on the relative activities of adenylate cyclase and cyclic AMP phosphodiesterase which also changed with age. Activation of adenylate cyclase by norepinephrine and NaF, and of cyclic AMP phosphodiesterase by calcium, was maximum neonatally and declined variably thereafter. These data suggest a relationship between cyclic AMP, glycogen and phospholipids during rat lung development.  相似文献   

15.
The effect of high level section of the spinal cord upon the hepatic cyclic AMP system was investigated in the rat. We report that transection of the spinal cord dramatically decreases the basal level of cyclic AMP from 0.88 nmol/g liver to 0.36 nmol/g at 1 h and to 0.20 nmol/g at 4 h. This was not due to increased activity of cyclic AMP phosphodiesterase or to decreased activity of basal adenylate cyclase. The sensitivity of adenylate cyclase to its usual effectors in vitro was not impaired. It is proposed that the lowering of liver cyclic AMP below its basal level after high level section of the spinal cord is due to decreased levels of hepatic catecholamines and/or plasma glucagon.  相似文献   

16.
The effect of high level section of the spinal cord upon the hepatic cyclic AMP system was investigated in the rat. We report that transection of the spinal cord dramatically decreases the basal level of cyclic AMP from 0.88 nmol/g liver to 0.36 nmol/g at 1 h and to 0.20 nmol/g at 4 h. This was not due to increased activity of cyclic AMP phosphodiesterase or to decreased activity of basal adenylate cyclase. The sensitivity of adenylate cyclase to its usual effectors in vitro was not impaired. It is proposed that the lowering of liver cyclic AMP below its basal level after high level section of the spinal cord is due to decreased levels of hepatic catecholamines and/or plasma glucagon.  相似文献   

17.
A detailed comparison of the interaction of β-adrenergic receptors with adenylate cyclase stimulation and modification of this interaction by guanine nucleotides has been made in two model systems, the frog and turkey erythrocyte. Objective analysis of the data was facilitated by the development of new graphical methods which involve the use of logit-logit transformations of percent receptor occupancy versus percent enzyme stimulation plots (coupling curves). Receptor-cyclase coupling in turkey erythrocyte membranes demonstrates a proportional relationship between receptor occupancy and adenylate cyclase activation and is unaffected by exogenous guanine nucleotides. By comparison, the proportional relationship of receptor occupancy and adenylate cyclase activation observed in frog erythrocyte membranes in the absence of guanine nucleotides is modified by the addition of exogenous guanine nucleotides such that a greater fractional enzyme stimulation is elicited by low receptor occupancy. Methodological criteria crucial for valid comparison of receptor occupancy and adenylate cyclase activity are delineated. In addition, the possible molecular mechanisms of receptor-cyclase coupling which might give rise to the coupling curves observed are discussed.  相似文献   

18.
1. The basal and fluoride-stimulated activities of adenylate cyclase, and the maximal activities of 3':5'-cyclic AMP phosphodiesterase and 3':5'-cyclic GMP phosphodiesterase, together with the Km values for their respective substrates, were measured in muscle, liver and nervous tissues from a large range of animals to provide information on the mechanism of control of cyclic AMP concentrations in these tissues. High activities of adenylate cyclase and cyclic AMP diesterase are found in nervous tissues and in the more aerobic muscles (e.g. insect flight muscles, cardiac muscle and some vertebrate skeletal muscles). The activities of these enzymes in liver are similar to those in the heart of the same animal. The Km values for the enzymes from different tissues and animals are remarkably similar. 2. The comparison of cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase activities suggests that in vertebrate tissues only one enzyme (the high-Km enzyme), which possesses dual specificity, exists, whereas in invertebrate tissues there are at least two phosphodiesterases with separate specificities. 3. A simple quantitative model to explain the control of the steady-state concentrations of cyclic AMP is proposed. The maximum increase in cyclic AMP concentration predicted by comparison of basal with fluoride-stimulated activities of adenylate cyclase is compared with the maximum increases in concentration produced in the intact tissue by hormonal stimulation: reasonable agreement is obtained. The model is also used to predict the actual concentrations and the rates of turnover of cyclic AMP in different tissues and, where possible, these values are compared with reported values. Reasonable agreement is found between predicted and reported values. The possible physiological significances of different rates of turnover of cyclic AMP and the different ratios of high- and low-Km phosphodiesterases in different tissues are discussed.  相似文献   

19.
The effect of halothane, ketamine and ethanol on β-adrenergic receptor adenylate cyclase system was studied in the brain of rats. An anesthetic concentration of halothane and ketamine added in vitro decreased the stimulatory effect of norepinephrine on cyclic AMP formation in slices from the cerebral cortex. On the other hand, ethanol increased the basal activity of cerebral adenylate cyclase without affecting on the norepinephrine-stimulated activity. The increase of the basal activity induced by ethanol was not antagonized by propranolol, a β-adrenergic antagonist. In the crude synaptosomal (P2) fraction, these drugs had no significant effect on the basal adenylate cyclase activity, binding of [3H]dihydroalprenolol to β-receptor, and binding of [3H]guanylylimido diphosphate ([3H]Gpp(NH)p) to guanyl nucleotide binding site. In contrast, the adenylate cyclase activity stimulated by Gpp(NH)p or NaF was significantly inhibited by an anesthetic concentration of these drugs. An anesthetic concentration of these drugs increased the membrane fluidity of P2 fraction monitored by the fluorescence polarization technique. The addition of linoleic acid (more than 500 μM) also induced not only the increase of fluidity, but also the decrease of Gpp(NH)p- or NaF-stimulated adenylate cyclase activity in the cerebral P2 fraction. The present results suggest that general anesthetics may interfere with the guanyl nucleotide binding regulatory protein-mediated activation of cerebral adenylate cyclase by disturbing the lipid region of synaptic membrane.  相似文献   

20.
Guanosine-5'-triphosphate (GTP) binds specifically to syncytiotrophoblast plasma membranes and increases the production of cyclic AMP in these membranes. 1. In syncytiotrophoblast membranes, GTP alone caused a significant increase in the basal levels of cyclic AMP in a dose dependent manner. 2. GTP alone did not significantly stimulate cyclic AMP production in turkey erythrocyte or bovine calf testes membranes. 3. GTP decreased Gpp(NH)p-mediated cyclic AMP production while increasing NaF-mediated cyclic AMP production in placental, erythrocyte and testes membranes. 4. Since cyclic AMP has been reported to regulate the levels of placental hormones, and it is shown in this study that GTP increases cyclic AMP production in the placenta, this study suggests: (A) placental GTP levels may indirectly regulate placental hormone production, (B) placental beta adrenergic (BA) mediated adenylate cyclase activity may not be regulated in the same manner as the BA system of avian erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号