共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth of streptomycin-dependent mutants of Escherichia coli K-12 was insensitive to valine when dihydrostreptomycin was present in a nonlimiting concentration in glucose-salts medium. Acetohydroxy acid synthase was derepressed under these conditions, owing to relaxation of catabolite repression. Valine sensitivity and catabolite repression were restored when streptomycin-dependent E. coli K-12 mutants were grown with limiting dihydrostreptomycin. End product repression of acetohydroxy acid synthase under conditions of relaxed catabolite repression was effected by any two (or more) end products except the combination valine plus isoleucine, which caused derepression. Single end products had no detectable effect on acetohydroxy acid synthase formation. 相似文献
2.
Starvation for ilvB operon leader amino acids other than leucine or valine does not increase acetohydroxy acid synthase activity in Escherichia coli. 总被引:2,自引:2,他引:0 下载免费PDF全文
Eleven different amino acids are encoded in the ilvB leader mRNA. Starvation for leucine or valine, but not for any of the other nine amino acids, resulted in high levels of acetohydroxy acid synthase I. These results are discussed in terms of a report (C.A. Hauser and G.W. Hatfield, Proc. Natl. Acad. Sci. U.S.A. 81:76-79, 1984) which suggests that threonine and alanine, in addition to leucine and valine, are involved in the regulation of the ilvB operon. 相似文献
3.
Enhanced acetohydroxy acid synthase III activity in an ilvH mutant of Escherichia coli K-12. 下载免费PDF全文
The acetohydroxy acid synthase III isozyme, which catalyzes the first common step in the biosynthesis of isoleucine, leucine, and valine in Escherichia coli K-12, is composed of two subunits, the ilvI and ilvH gene products. A missense mutation in ilvH (ilvH612), which reduced the sensitivity of the enzyme to the end product inhibition by valine, also increased its specific activity and lowered the Km for alpha-acetolactate synthesis. The mutation increased the sensitivity of acetohydroxy acid synthase III to dialysis and heat treatment and reduced the requirement for thiamine pyrophosphate addition to the assay mixture for activity. A strain carrying the ilvH612 mutation grew better than a homologous ilvH+ strain in the presence of leucine. The data indicate that this is a consequence of a more active acetohydroxy acid synthase III isozyme rather than the result of an alteration of the leucine-mediated repression of the ilvIH operon. 相似文献
4.
5.
Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum 总被引:2,自引:0,他引:2
Elisáková V Pátek M Holátko J Nesvera J Leyval D Goergen JL Delaunay S 《Applied and environmental microbiology》2005,71(1):207-213
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions. 相似文献
6.
7.
Two valine-sensitive acetohydroxy acid synthase activities were separable from K-12 cells by virtue of their different affinities for DEAE-cellulose eluted with a KC1 gradient. These activities appeared to be independent from a valine-resistant cryptic component expressed only in regulatory mutants. The properties of the first and second activity were coincident to those of extracts of and mutants, respectively. These data prove that the and gene products exist in the cell as physically distinct acetohydroxy acid synthase isoenzymes. 相似文献
8.
Summary Genetic mapping experiments have established that two recently isolated valine-resistant mutants of the K-12 strain of Escherichia coli have lesions lying between ilvE and rbs. These lesions allowed expression of the ilvG gene, specifying the valine-insensitive acetohydroxy acid synthase (synthase II) and an increased expression of the ilvEDA operon. In this respect, they resembled an earlier described ilvO lesion that was reported to lie between ilvA and ilvC. All three lesions were cis-dominant in cis-trans tests. Reexamination of the earlier studied ilvO lesion revealed that it, too, lies between ilvE and rbs. Valine-sensitive derivatives with lesions presumed to be in ilvG were selected from each of the valine-resistant strains. In two of the valine-resistant strains, the ilvG mutations were on the rbs side of ilvO, indicating a gene order rbs-ilvG-ilvO-ilvE-ilvD-ilvA-ilvC. In one of the recently isolated valine-resistant stocks, however, the apparent ilvG mutation was found to be between ilvE and the aline resistance marker. This finding suggests that either ilvO and ilvG mutations are interspersed or there is another locus, ilvR, that behaves phenotypically like ilvO and which lies between ilvG and rbs. 相似文献
9.
Examination of the ilvF locus at 54 min on the Escherichia coli K-12 chromosome revealed that it is a cryptic gene for expression of a valine-resistant acetohydroxy acid synthase (acetolactate synthase; EC 4.1.3.18) distinct from previously reported isozymes. A spontaneous mutation, ilvF663, yielded IlvF+ enzyme activity that was multivalently repressed by all three branched-chain amino acids, was completely insensitive to feedback inhibition, was highly stable at elevated temperatures, and expressed optimal activity at 50 degrees C. The IlvF+ enzyme activity was expressed in strains in which isozyme II was inactive because of the ilvG frameshift in the wild-type strain K-12 and isozymes I and III were inactivated by point mutations or deletions. Tn5 insertional mutagenesis yielded two IlvF- mutants, with the insertion in ilvF663 in each case. These observations suggest that the ilvF663 locus may be a coding region for a unique acetohydroxy acid synthase activity. 相似文献
10.
Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli 总被引:5,自引:0,他引:5
Acetohydroxy acid synthase (AHAS, EC 4.1.3.18) isozyme III from Escherichia coli has been studied in steady-state kinetic experiments in which the rates of formation of acetolactate (AL) and acetohydroxybutyrate (AHB) have been determined simultaneously. The ratio between the rates of production of the two alternative products and the concentrations of the substrates pyruvate and 2-ketobutyrate (2KB) leading to them, R, VAHB/VAL = R[( 2KB]/[pyruvate]), was found to be 40 +/- 3 under a wide variety of conditions. Because pyruvate is a common substrate in the reactions leading to both products and competes with 2-ketobutyrate to determine whether AL or AHB is formed, steady-state kinetic studies are unusually informative for this enzyme. At a given pyruvate concentration, the sum of the rates of formation of AL and AHB was nearly independent of the 2-ketobutyrate concentration. On the basis of these results, a mechanism is proposed for the enzyme that involves irreversible and rate-determining reaction of pyruvate, at a site which accepts 2-ketobutyrate poorly, if at all, to form an intermediate common to all the reactions. In the second phase of the reaction, various 2-keto acids can compete for this intermediate to form the respective acetohydroxy acids. 2-Keto acids other than the natural substrates pyruvate and 2-ketobutyrate may also compete, to a greater or lesser extent, in the second phase of the reaction to yield alternative products, e.g., 2-ketovalerate is preferred by about 2.5-fold over pyruvate. However, the presence of an additional keto acid does not affect the relative specificity of the enzyme for pyruvate and 2-ketobutyrate; this further supports the proposed mechanism. The substrate specificity in the second phase is an intrinsic property of the enzyme, unaffected by pH or feedback inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
12.
A L Williams 《Biochimica et biophysica acta》1986,866(1):15-18
The effects of several metabolites (indole acetic acid, imidazole acetic acid and indole) on acetohydroxy acid synthase activities have been examined in both cya+ and cya- strains. Specifically, indole acetic acid caused an increase in the rate of acetohydroxy acid synthase synthesis under both in vivo and in vitro conditions. Taken together, these data suggest that small metabolites, other than cAMP, can alter acetohydroxy acid synthase gene expression. 相似文献
13.
A method by which three acetohydroxy acid synthetase activities are separated from extracts of Escherichia coli 9723 has been developed. Isoleucine specifically represses synthesis of one of the enzymes, which is not sensitive to valine inhibition, and isoleucine also simultaneously enhances the production of a second activity, which is valine inhibitable. The valine-inhibitable activity is repressed by leucine and valine, a combination of which is more effective than either alone. The third acetohydroxy acid synthetase, which is more active at pH 6 than at 8, is not controlled by the branched-chain amino acids. In a mutant of E. coli 9723 selected for the ability of valine to inhibit growth, the isoleucine-repressible acetohydroxy acid synthetase activity was no longer present, but isoleucine addition still resulted in enhanced production of the valine-inhibitable activity. 相似文献
14.
15.
16.
A permeabilized-cell technique for rapid assay of enzyme activity has revealed enhanced allosteric regulation of both threonine deaminase (L-threonine hydrolyase (deaminating), EC 4.2.1.16) and acethohydroxy acid synthease (acetolactate pyruvate-lyase (carboxylating), EC 4.1.3.18) in Escherichia col K-12. In the permeabilized cell assay threonine deaminase exhibited a higher Hill coefficient for inhibition by L-isoleucine, and acetohydroxy acid synthase exhibited a hypersensensitivity to allosteric inhibition by L-valine when compared to studies on crude extracts. We propose that these effects reflect the in situ microenvironments of both enzymes. Preliminary evidence further indicates that acetohydroxy acid synthase may loosely associate with the cell membrane. 相似文献
17.
Regulation of acetohydroxy acid synthase activities in adenyl cyclase-deficient strains of Escherichia coli K-12 总被引:1,自引:0,他引:1
A L Williams 《Molecular & general genetics : MGG》1983,191(3):353-357
Previous findings suggested that cyclic AMP was involved in the regulation of ilvB(AHASI) only and that ilvG (AHASII) and ilvHI (AHASIII) were not controlled by this nucleotide. In this study, derepression patterns of total AHAS activities (ilvB and ilvHI) in adenyl cyclase-negative strains (i.e. cya-) were substantially reduced as contrasted with AHAS activity observed for cya+ strains. Further, the parental strains (cya+) consistently exhibited higher levels of AHAS activity than mutant strains (cya-) during carbon and energy downshifts. Other data suggested that the valine derepression signal could not override the necessity for cya gene product to yield maximal derepression of AHAS gene activities. Cyclic AMP stimulated AHAS gene activities under both in vivo and in vitro assay conditions. Thus, these data provide evidence for an absolute requirement of cAMP for maximal expression of the genes encoding for AHAS activities of E. coli K-12. 相似文献
18.
Regulation of cyclic AMP of the ilvB-encoded biosynthetic acetohydroxy acid synthase in Escherichia coli K-12 总被引:16,自引:0,他引:16
Summary The biosynthetic acetohydroxy acid synthase activities of E. coli K12 are encoded by three genetic loci namely, ilvB (acetohydroxy acid synthase I), ilvG (acetohydroxy acid synthase II) and ilvHI (acetohydroxy acid synthase III). The previously reported involvement of cyclic AMP in the regulation of the biosynthetic acetohydroxy acid synthase isozymes in E. coli K-12 was found to be due to the effect of this nucleotide on the expression of ilvB. Cyclic AMP had no effect on acetohydroxy acid synthase activity in strains lacking wild-type ilvB activity but containing the remaining isozymes. Very little activity of acetohydroxy acid synthase coded for by ilvB was found when ppGpp and cyclic AMP were severely limited. Addition of cyclic AMP under these conditions increased ilvB expression 24-fold. The data suggest that in addition to multivalent repression and ppGpp, cyclic AMP plays a major role in the regulation of the ilvB biosynthetic operon. 相似文献
19.
20.
Engel S Vyazmensky M Berkovich D Barak Z Chipman DM 《Biotechnology and bioengineering》2004,88(7):825-831
Acetohydroxy acid synthase I appears to be the most effective of the AHAS isozymes found in Escherichia coli in the chiral synthesis of phenylacetyl carbinol from pyruvate and benzaldehyde. We report here the exploration of a range of aldehydes as substrates for AHAS I and demonstrate that the enzyme can accept a wide variety of substituted benzaldehydes, as well as heterocyclic and heteroatomic aromatic aldehydes, to produce chiral carbinols. The active site of AHAS I does not appear to impose serious steric constraints on the acceptor substrate. The influence of electronic effects on the reaction has been probed using substituted benzaldehydes as substrates. The electrophilicity of the aldehyde acceptor substrates is most important to their reactivity, but the lipophilicity of substituents also affects their reactivity. AHAS I is an effective biosynthetic platform for production of a variety of alpha-hydroxy ketones, compounds with considerable potential as pharmacological precursors. 相似文献