首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
小鼠早期胚胎发育期间TGF—β免疫组织化学定位   总被引:2,自引:1,他引:1  
The distribution of transforming growth factor beta-1 (TGF-beta-1) in the early developing mouse embryos between day 1 and day 12 of gestation was examined by immunohistochemical techniques. Polyclonal rabbit antiserum raised against a synthetic oligopeptide identical to the N-terminal residues 1-29 of TGF-beta-1 from human platelets was used. The following results were obtained: 1. Embryonic cells of early cleavage stages (2, 4 and 8 cells) and late morulae showed positive immunofluorescent reaction without any difference in staining intensity (Plate I, Figs. 1-4). 2. Marked staining of blastocysts in toto or sections with anti-TGF-beta-1 antibodies by either immunofluorescence or immunoperoxidase reaction was also observed. Inner cell mass (ICM) cells and trophoectoderm cells were both reacted, but more intense staining was found in primary endoderm cells differentiated from ICM cells adjacent to blastocoele (Plate II, Fig. 5). 3. Scattered granules stained strongly with immunoperoxidase reaction were present in embryonic ectoderm and visceral endoderm surrounding the forming mesoderm which was only slightly stained (Plate II, Fig. 6). 4. Intense immunoperoxidase staining was also present in mesoderm of visceral yolk sac of day 8 and day 10 embryos (Plate II, Fig. 7). 5. During the formation of somites, neural tube and limb bud, remarkable staining was found in mesenchyme, individual cells of somites, mucous layer of gut tubes, heart and limb buds (Plate III, Figs. 8-10). No significant staining was seen in neural cells per se except the inner surface of neural tube. The results of present studies indicate that abundant TGF-beta-1 is present in preimplantation mouse embryos including cleavage, morulae and blastocyst stages. In postimplantation embryos, TGF-beta-1 appears to play an important role in the differentiation of endoderm and mesoderm, particularly in the development of extraembryonic tissues, and in later morphogenetic and histogenetic events involving mainly mesoderm or mesenchyme cells.  相似文献   

3.
4.
In early postimplantation mouse development, transferrin synthesis appears to be a marker of visceral endoderm cell types. Transferrin was identified using immunoperoxidase staining, in the proximal (visceral) endoderm of the sixth-day egg cylinder, in some tissues at later stages, and in the visceral yolk sac (VYS) at all stages examined. Since the location of a plasma protein does not necessarily indicate its site of synthesis, the incorporation of labeled amino acids into transferrin was studied. Synthesis could be detected in egg cylinders on the seventh day of gestation onwards and in the VYS at all stages. However, although endoderm was the likely tissue source, its ability to synthesize transferrin after its isolation from the embryo was either much reduced or absent. The data are suggestive of a modulating influence by mesoderm and other cell types on transferrin synthesis in visceral endoderm cells. Three types of endoderm-like cells which are produced by teratocarcinoma embryonal carcinoma (EC) cells were analyzed for transferrin synthesis to assess possible parallels with the embryo. Embryoid bodies from PSA1 EC cells contained some outer endoderm cells which stained for transferrin and others which did not. The endoderm line PSA5E but not PYS-2 synthesized transferrin. The third type of endoderm-like cell (END cells) synthesized very little (OC15S1) or no (PC13 clone 5) transferrin. The conclusion that PSA5E, OC15 END, and some differentiated PSA1 cells have visceral endoderm-like character while PYS-2 reflects parietal endoderm phenotype is in agreement with published data.  相似文献   

5.
6.
Polarity of the mouse embryo is anticipated before implantation   总被引:3,自引:0,他引:3  
In most species, the polarity of an embryo underlies the future body plan and is determined from that of the zygote. However, mammals are thought to be an exception to this; in the mouse, polarity is generally thought to develop significantly later, only after implantation. It has not been possible, however, to relate the polarity of the preimplantation mouse embryo to that of the later conceptus due to the lack of markers that endure long enough to follow lineages through implantation. To test whether early developmental events could provide cues that predict the axes of the postimplantation embryo, we have used the strategy of injecting mRNA encoding an enduring marker to trace the progeny of inner cell mass cells into the postimplantation visceral endoderm. This tissue, although it has an extraembryonic fate, plays a role in axis determination in adjacent embryonic tissue. We found that visceral endoderm cells that originated near the polar body (a marker of the blastocyst axis of symmetry) generally became distal as the egg cylinder formed, while those that originated opposite the polar body tended to become proximal. It follows that, in normal development, bilateral symmetry of the mouse blastocyst anticipates the polarity of the later conceptus. Moreover, our results show that transformation of the blastocyst axis of symmetry into the axes of the postimplantation conceptus involves asymmetric visceral endoderm cell movement. Therefore, even if the definitive axes of the mouse embryo become irreversibly established only after implantation, this polarity can be traced back to events before implantation.  相似文献   

7.
Using H253 mouse stock harboring X-linked HMG-lacZ transgene, we examined X chromosome inactivation patterns in sectioned early female embryos. X-gal staining patterns were generally consistent with the paternal X inactivation in the trophectoderm and the primitive endoderm cell lineages and random inactivation in the epiblast lineages. The occurrence of embryonic visceral endoderm cells apparently at variance with the paternal X chromosome inactivation in 7.5 dpc embryos was explained by the replacement of visceral endoderm cells with cells of epiblast origin. The frequency of cells negative for X-gal staining in 4.5-5.5 dpc XmXp* embryos fluctuated considerably especially in the extraembryonic ectoderm and the primitive endoderm, whereas it was less variable in the embryonic ectoderm. We could not, however, determine whether it is a normal phenomenon revealed for the first time by the use of HMG-lacZ transgene or an abnormality caused by the multicopy transgene.  相似文献   

8.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A 100,000-Da glucose-regulated surface protein (100K-GRP) has previously been isolated from the cell surface and culture medium of human fibroblasts. A rabbit antiserum directed against this protein reacts with the cell surface of both human and murine cultured cells and with a broad spectrum of mammalian tissues. It is shown, via indirect immunofluorescence, that this protein is also present on cells of the developing mouse embryo and can be detected as early as the 4-cell stage. The 8-cell embryo and morula show positive surface labeling; the inner cell masses of both the pre- and postimplantation blastocysts are also positive but the trophectoderm is not. At the 6-day egg cylinder stage, the embryonic and extra-embryonic ectoderm label intensely with the antiserum and visceral endoderm shows faint labeling. No labeling can be detected on parietal endoderm or on the trophoblastic giant cells invading the uterine decidua. However, the internal cells of the ectoplacental cone exhibit bright fluorescence. The same pattern is observed on 7- to 8.5-day embryos, except that at this stage no label is associated with the visceral endoderm. In addition, mesodermal cells emerging from the primitive streak are also labeled.  相似文献   

10.
The distribution of the stage-specific embryonic antigen SSEA-3 was studied immunohistochemically on postimplantation mouse embryos. This carbohydrate antigen, identified as an epitope of a globo-series ganglioside isolated from human teratocarcinoma cells (Kannagi et al., 1983, J. Biol. Chem.258, 8934–8942) was originally detected on the zygote and mouse early cleavage-stage embryos. It disappears on the early blastocyst and reappears on the primitive endoderm of the implanting blastocyst (Shevinsky et al., 1982, Cell30, 697–705). We now show in the early egg cylinder (on the sixth day of pregnancy) SSEA-3 is present in the entire visceral endoderm but not in any other part of the conceptus. From Day 7 of pregnancy onward, SSEA-3 is restricted to the extraembryonic visceral endoderm and the visceral yolk sac cells. Therefore, SSEA-3 is a useful marker for this endodermal cell lineage in midgestational mouse embryos.  相似文献   

11.
The cell movements underlying the morphogenesis of the embryonic endoderm, the tissue that will give rise to the respiratory and digestive tracts, are complex and not well understood. Using live imaging combined with genetic labeling, we investigated the cell behaviors and fate of the visceral endoderm during gut endoderm formation in the mouse gastrula. Contrary to the prevailing view, our data reveal no mass displacement of visceral endoderm to extraembryonic regions concomitant with the emergence of epiblast-derived definitive endoderm. Instead, we observed dispersal of the visceral endoderm epithelium and extensive mixing between cells of visceral endoderm and epiblast origin. Visceral endoderm cells remained associated with the epiblast and were incorporated into the early gut tube. Our findings suggest that the segregation of extraembryonic and embryonic tissues within the mammalian embryo is not as strict as believed and that a lineage previously defined as exclusively extraembryonic contributes cells to the embryo.  相似文献   

12.
The murine visceral endoderm is an extraembryonic cell layer that appears prior to gastrulation and performs critical functions during embryogenesis. The traditional role ascribed to the visceral endoderm entails nutrient uptake and transport. Besides synthesizing a number of specialized proteins that facilitate uptake, digestion, and secretion of nutrients, the extraembryonic visceral endoderm coordinates blood cell differentiation and vessel formation in the adjoining mesoderm, thereby facilitating efficient exchange of nutrients and gases between the mother and embryo. Recent studies suggest that in addition to this nutrient exchange function the visceral endoderm overlying the egg cylinder stage embryo plays an active role in guiding early development. Cells in the anterior visceral endoderm function as an early organizer. Prior to formation of the primitive streak, these cells express specific gene products that specify the fate of underlying embryonic tissues. In this review we highlight recent investigations demonstrating this dual role for visceral endoderm as a provider of both nutrients and developmental cues for the early embryo.  相似文献   

13.
Genetic studies in fish, amphibia, and mice have shown that deficiency of Nodal signaling blocks differentiation into mesoderm and endoderm. Thus, Nodal is considered as a major inducer of mesendoderm during gastrulation. On this basis, Nodal is a candidate for controlling differentiation of pluripotent human embryonic stem cells (hESCs) into tissue lineages with potential clinical value. We have investigated the effect of Nodal, both as a recombinant protein and as a constitutively expressed transgene, on differentiation of hESCs. When control hESCs were grown in chemically defined medium, their expression of markers of pluripotency progressively decreased, while expression of neuroectoderm markers was strongly upregulated, thus revealing a neuroectodermal default mechanism for differentiation in this system. hESCs cultured in recombinant Nodal, by contrast, showed prolonged expression of pluripotency marker genes and reduced induction of neuroectoderm markers. These Nodal effects were accentuated in hESCs expressing a Nodal transgene, with striking morphogenetic consequences. Nodal-expressing hESCs developing as embryoid bodies contained an outer layer of visceral endoderm-like cells surrounding an inner layer of epiblast-like cells, each layer having distinct gene expression patterns. Markers of neuroectoderm were not upregulated during development of Nodal-expressing embryoid bodies, nor was there induction of markers for definitive mesoderm or endoderm differentiation. Moreover, the inner layer expressed markers of pluripotency, characteristic of undifferentiated hESCs and of epiblast in mouse embryos. These results could be accounted for by an inhibitory effect of Nodal-induced visceral endoderm on pluripotent cell differentiation into mesoderm and endoderm, with a concomitant inhibition of neuroectoderm differentiation by Nodal itself. There could also be a direct effect of Nodal in the maintenance of pluripotency. In summary, analysis of the Nodal-expressing phenotype suggests a function for the transforming growth factor-beta (TGF-beta) growth factor superfamily in pluripotency and in early cell fate decisions leading to primary tissue layers during in vitro development of pluripotent human stem cells. The effects of Nodal on early differentiation illustrate how hESCs can augment mouse embryos as a model for analyzing mechanisms of early mammalian development.  相似文献   

14.
The formation of extraembryonic endoderm is one of the earliest steps in the differentiation of pluripotent cells of the inner cell mass during the early stages of embryonic development. The primitive endoderm cells and the derived parietal and visceral endoderm cells gain the capacity to produce collagen IV and laminin. The deposition of these components results in the formation of basement membrane and epithelium of the endoderm, with polarized cells covering the inner surface of the blastocoels. We used retinoic acid-induced endoderm differentiation of stem cell-like F9 embryonic carcinoma cells to study the role of the Ras pathway and its regulation in the formation of the visceral endoderm. Upon endoderm differentiation of F9 cells induced by retinoic acid, c-Fos expression, the downstream target of the Ras pathway, is suppressed by uncoupling Elk-1 phosphorylation/activation to MAPK activity. However, attachment to matrix gel greatly enhances the activation of MAPK in endoderm cells but not in undifferentiated F9 cells. Enhanced MAPK activation as a result of contact with basement membrane is able to compensate for reduced Elk-1 phosphorylation and c-Fos expression. We conclude that endoderm differentiation renders the activation of the Ras pathway basement membrane dependent, contributing to the epithelial organization of the visceral endoderm.  相似文献   

15.
16.
Summary: Senescence‐associated β‐galactosidase (SA‐β‐gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA‐β‐gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA‐β‐gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic β‐galactosidase function in these organelles. SA‐β‐gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos. genesis 52:300–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Lim1 is a homeobox gene expressed in the extraembryonic anterior visceral endoderm and in primitive streak-derived tissues of early mouse embryos. Mice homozygous for a targeted mutation of Lim1 lack head structures anterior to rhombomere 3 in the hindbrain. To determine in which tissues Lim1 is required for head formation and its mode of action, we have generated chimeric mouse embryos and performed tissue layer recombination explant assays. In chimeric embryos in which the visceral endoderm was composed of predominantly wild-type cells, we found that Lim1(-)(/)(-) cells were able to contribute to the anterior mesendoderm of embryonic day 7.5 chimeric embryos but that embryonic day 9.5 chimeric embryos displayed a range of head defects. In addition, early somite stage chimeras generated by injecting Lim1(-)(/)(-) embryonic stem cells into wild-type tetraploid blastocysts lacked forebrain and midbrain neural tissue. Furthermore, in explant recombination assays, anterior mesendoderm from Lim1(-)(/)(-) embryos was unable to maintain the expression of the anterior neural marker gene Otx2 in wild-type ectoderm. In complementary experiments, embryonic day 9.5 chimeric embryos in which the visceral endoderm was composed of predominantly Lim1(-)(/)(-) cells and the embryo proper of largely wild-type cells, also phenocopied the Lim1(-)(/)(-) headless phenotype. These results indicate that Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation and that its inactivation in these tissues produces cell non-autonomous defects. We discuss a double assurance model in which Lim1 regulates sequential signaling events required for head formation in the mouse.  相似文献   

18.
19.
小鼠胚胎干细胞分化形成拟胚体过程中的细胞程序性死亡   总被引:1,自引:0,他引:1  
为了检测小鼠胚胎干细胞 (embryonicstemcell ,ES细胞 )体外分化的拟胚体 (embryoidbodies ,EBs)形成过程中细胞程序性死亡 (programmedcelldeath ,PCD)的发生 ,通过悬滴、悬浮培养技术定向诱导未分化的ES细胞分化为拟胚体 ,并用RT PCR检测原始内胚层、原始外胚层、中胚层、内脏内胚层 4种分子标记物在EBs中的表达 .通过TUNEL染色、电镜、激光共聚焦显微镜及Western印迹以确定凋亡发生 .结果表明 :ES细胞体外分化为拟胚体并且表达各胚层相应的分子标记物 ;在拟胚体的发育过程中出现明显的空腔化过程 ,TUNEL染色及电镜观察到凋亡生成 ,同时线粒体膜电位 (ΔΨm)在拟胚体发育过程中降低 ,通过Western印迹检测到caspase3、caspase8的激活 .表明小鼠ES细胞所分化的拟胚体可以作为研究早期胚胎发育的实验模型 ,线粒体在拟胚体的细胞程序性死亡过程中发挥重要的作用 .为进一步利用拟胚体研究细胞程序性死亡及相关信号分子在小鼠胚胎发育早期的作用奠定了基础  相似文献   

20.
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm‐like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号