首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New insights into the arrangement of the genetic code table, based on the analysis of the physico-chemical properties of its molecular constituents, are reported in this paper. It will be demonstrated that the code has a twofold symmetry that is not apparent from the conventional code table, but becomes apparent when the codon-anticodon energies are listed for each triplet. The evolutionary development of the current code based on single base replacement mutations (transitions) from an 'iso-energetic' degenerated subset of 16 of the 64 codons is discussed. The energy landscape of all 64 codons is presented. A detailed analysis of the energy changes due to mutations in the 3rd, 1st or 2nd position of a codon reveals that the modern genetic code is highly robust. Changes come in small discrete steps that can be quantified in relation to the thermal noise of the system. The relation of the individual codon to its neighbours in the rearranged codon table can be completely understood based on thermodynamic considerations.  相似文献   

2.
The first symmetry by base substitutions of degeneracy in the genetic code was described by Rumer (1966) and the other symmetries were identified later by Jestin (2006) and Jestin and Soulé (2007). Here, a rationale accounting for these symmetries is reported. The number of non-synonymous substitutions over the replicated coding sequence is written as a function of the substitution matrix, whose elements are the number of substitutions from any codon to any other codon. The p-adic distance used as a similarity measure and applied to this matrix is shown to be biologically relevant. The rationale indicates that symmetries by base substitutions of degeneracy in the genetic code are symmetries of the measures of the number of non-synonymous substitutions for sets of synonymous codons.  相似文献   

3.
The standard genetic code is found to exhibit an exact symmetry under a finite group of order 4 known in mathematics as the Klein group. The same symmetry is also present in almost all non-standard codes, mitochondrial as well as nuclear. Analysis of the phylogenetic tree for the evolution of the mitochondrial codes reveals that all changes along the main line of evolution preserve this symmetry, with a tendency towards symmetry enhancement. In the side branches of the evolutionary tree, the majority of changes also respect the symmetry. The few exceptional cases where it is broken correspond to reassignments that appear to be unstable or incomplete. Since the Klein group emerges naturally from the symplectic model for the prebiotic evolution that has led to the standard code, we interpret these results as lending support to the hypothesis that this symmetry has been selected during the evolution of the genetic code, not only before but also after establishment of the standard code.  相似文献   

4.
The origin of the genetic code may be attributed to a postulated prebiological stereochemistry in which amino acid dimers, the trans -R,R'-diketopiperazines, interacted with prototype codon and anticodon nucleotide sequences. An intricately coupled stereochemistry is formulated which displays a binary logic for amino acid-codon recognition. It is shown that the diketopiperazine ring system can be inserted between any terminal pair of base paired nucleotides in a codon-anticodon structure with exact registration of complementary hydrogen bonding functional groups. This yields a codon-dimer-anticodon structure in which each amino acid residue is projected towards and interacts with a particular sequence of vicinal nucleotides on either codon or anticodon. The projection direction and the sequence of nucleotides encountered is a strongly coupled function of the choice of codon terminal nucleotide and the handedness of the amino acid. The reciprocal chemical nature of the complementary base pairs drives the selection of dimers containing quite dissimilar and chirally opposed amino acids. Application of the stereochemical model to the in vivo system leads to a general correlation for amino acid-codon assignments. The genetic code is restated in terms of the dimers selected. The profound symmetry of the code is elucidated and this proves useful for correlative and predictive purposes.  相似文献   

5.
To explore how chemical structures of both nucleobases and amino acids may have played a role in shaping the genetic code, numbers of sp2 hybrid nitrogen atoms in nucleobases were taken as a determinative measure for empirical stereo-electronic property to analyze the genetic code. Results revealed that amino acid hydropathy correlates strongly with the sp2 nitrogen atom numbers in nucleobases rather than with the overall electronic property such as redox potentials of the bases, reflecting that stereo-electronic property of bases may play a role. In the rearranged code, five simple but stereo-structurally distinctive amino acids (Gly, Pro, Val, Thr and Ala) and their codon quartets form a crossed intersection “core”. Secondly, a re-categorization of the amino acids according to their β-carbon stereochemistry, verified by charge density (at β-carbon) calculation, results in five groups of stereo-structurally distinctive amino acids, the group leaders of which are Gly, Pro, Val, Thr and Ala, remarkably overlapping the above “core”. These two lines of independent observations provide empirical arguments for a contention that a seemingly “frozen” “core” could have formed at a certain evolutionary stage. The possible existence of this codon “core” is in conformity with a previous evolutionary model whereby stereochemical interactions may have shaped the code. Moreover, the genetic code listed in UCGA succession together with this codon “core” has recently facilitated an identification of the unprecedented icosikaioctagon symmetry and bi-pyramidal nature of the genetic code.  相似文献   

6.
In the RNA world, RNA is assumed to be the dominant macromolecule performing most, if not all, core "house-keeping" functions. The ribo-cell hypothesis suggests that the genetic code and the translation machinery may both be born of the RNA world, and the introduction of DNA to ribo-cells may take over the informational role of RNA gradually, such as a mature set of genetic code and mechanism enabling stable inheritance of sequence and its variation. In this context, we modeled the genetic code in two content variables-GC and purine contents-of protein-coding sequences and measured the purine content sensitivities for each codon when the sensitivity (% usage) is plotted as a function of GC content variation. The analysis leads to a new pattern-the symmetric pattern-where the sensitivity of purine content variation shows diagonally symmetry in the codon table more significantly in the two GC content invariable quarters in addition to the two existing patterns where the table is divided into either four GC content sensitivity quarters or two amino acid diversity halves. The most insensitive codon sets are GUN (valine) and CAN (CAR for asparagine and CAY for aspartic acid) and the most biased amino acid is valine (always over-estimated) followed by alanine (always under-estimated). The unique position of valine and its codons suggests its key roles in the final recruitment of the complete codon set of the canonical table. The distinct choice may only be attributable to sequence signatures or signals of splice sites for spliceosomal introns shared by all extant eukaryotes.  相似文献   

7.
We present a new classification scheme of the genetic code. In contrast to the standard form it clearly shows five codon symmetries: codon-anticodon, codon-reverse codon, and sense-antisense symmetry, as well as symmetries with respect to purine-pyrimidine (A versus G, U versus C) and keto-aminobase (G versus U, A versus C) exchanges. We study the number of tRNA genes of 16 archaea, 81 bacteria and 7 eucaryotes to analyze whether these symmetries are reflected in the corresponding tRNA usage patterns. Two features are especially striking: reverse stop codons do not have their own tRNAs (just one exception in human), and A** anticodons are significantly suppressed. Our classification scheme of the genetic code and the identified tRNA usage patterns support recent speculations about the early evolution of the genetic code. In particular, pre-tRNAs might have had the ability to bind their codons in two directions to the corresponding codons.  相似文献   

8.
Alterations to the genetic code – codon reassignments – have occurred many times in life’s history, despite the fact that genomes are coadapted to their genetic codes and therefore alterations are likely to be maladaptive. A potential mechanism for adaptive codon reassignment, which could trigger either a temporary period of codon ambiguity or a permanent genetic code change, is the reactivation of a pseudogene by a nonsense suppressor mutant transfer RNA. I examine the population genetics of each stage of this process and find that pseudogene rescue is plausible and also readily explains some features of extant variability in genetic codes.  相似文献   

9.
The standard classification scheme of the genetic code is organized for alphabetic ordering of nucleotides. Here we introduce the new, “ideal” classification scheme in compact form, for the first time generated by codon sextets encoding Ser, Arg and Leu amino acids. The new scheme creates the known purine/pyrimidine, codon–anticodon, and amino/keto type symmetries and a novel A + U rich/C + G rich symmetry. This scheme is built from “leading” and “nonleading” groups of 32 codons each. In the ensuing 4 × 16 scheme, based on trinucleotide quadruplets, Ser has a central role as initial generator. Six codons encoding Ser and six encoding Arg extend continuously along a linear array in the “leading” group, and together with four of six Leu codons uniquely define construction of the “leading” group. The remaining two Leu codons enable construction of the “nonleading” group. The “ideal” genetic code suggests the evolution of genetic code with serine as an initiator.  相似文献   

10.
The genetic code provides the translation table necessary to transform the information contained in DNA into the language of proteins. In this table, a correspondence between each codon and each amino acid is established: tRNA is the main adaptor that links the two. Although the genetic code is nearly universal, several variants of this code have been described in a wide range of nuclear and organellar systems, especially in metazoan mitochondria. These variants are generally found by searching for conserved positions that consistently code for a specific alternative amino acid in a new species. We have devised an accurate computational method to automate these comparisons, and have tested it with 626 metazoan mitochondrial genomes. Our results indicate that several arthropods have a new genetic code and translate the codon AGG as lysine instead of serine (as in the invertebrate mitochondrial genetic code) or arginine (as in the standard genetic code). We have investigated the evolution of the genetic code in the arthropods and found several events of parallel evolution in which the AGG codon was reassigned between serine and lysine. Our analyses also revealed correlated evolution between the arthropod genetic codes and the tRNA-Lys/-Ser, which show specific point mutations at the anticodons. These rather simple mutations, together with a low usage of the AGG codon, might explain the recurrence of the AGG reassignments.  相似文献   

11.
A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature. Received: 8 August 1996 / Accepted: 26 December 1996  相似文献   

12.
The genetic code is not random but instead is organized in such a way that single nucleotide substitutions are more likely to result in changes between similar amino acids. This fidelity, or error minimization, has been proposed to be an adaptation within the genetic code. Many models have been proposed to measure this adaptation within the genetic code. However, we find that none of these consider codon usage differences between species. Furthermore, use of different indices of amino acid physicochemical characteristics leads to different estimations of this adaptation within the code. In this study, we try to establish a more accurate model to address this problem. In our model, a weighting scheme is established for mistranslation biases of the three different codon positions, transition/transversion biases, and codon usage. Different indices of amino acids physicochemical characteristics are also considered. In contrast to pervious work, our results show that the natural genetic code is not fully optimized for error minimization. The genetic code, therefore, is not the most optimized one for error minimization, but one that balances between flexibility and fidelity for different species.  相似文献   

13.
The universal genetic code links the 20 naturally occurring amino acids to the 61 sense codons. Previously, the UAG amber stop codon (a nonsense codon) has been used as a blank in the code to insert natural and unnatural amino acids via nonsense suppression. We have developed a selection methodology to investigate whether the unnatural amino acid biocytin could be incorporated into an mRNA display library at sense codons. In these experiments we probed a single randomized NNN codon with a library of 16 orthogonal, biocytin-acylated tRNAs. In vitro selection for efficient incorporation of the unnatural amino acid resulted in templates containing the GUA codon at the randomized position. This sense suppression occurs via Watson-Crick pairing with similar efficiency to UAG-mediated nonsense suppression. These experiments suggest that sense codon suppression is a viable means to expand the chemical and functional diversity of the genetic code.  相似文献   

14.
The standard genetic code (SGC) has a fundamental error-minimizing property which has been widely attributed to the action of selection. However, a clear mechanism for how selection can give rise to error minimization (EM) is lacking. A search through a space of alternate codes (code space) via codon reassignments would be required, to select a code optimized for EM. There are two commonly discussed mechanisms of codon reassignment; the Codon Capture mechanism, which proposes a loss of the codon during reassignment, and the Ambiguous Intermediate mechanism, which proposes that the codon underwent an ambiguous phase during reassignment. When searching of code space via the Codon Capture mechanism is simulated, an optimized genetic code can rarely be achieved (0–3.2% of the time) with most searches ending in failure. When code space is searched via the Ambiguous Intermediate mechanism, under constraints derived from empirical observations of codon reassignments from extant genomes, the searches also often end in failure. When a local minimum is avoided and optimization is achieved, 20–41 sequential improving codon reassignments are required. Furthermore, the structures of the optimized codes produced by these simulations differ from the structure of the SGC. These data are challenges for the Adaptive Code hypothesis to address, which proposes that the EM property was directly selected for, and suggests that EM is simply a byproduct of the addition of amino acids to the expanding code, as described by the alternative ‘Emergence’ hypothesis.  相似文献   

15.
A K Konopka 《Biochimie》1985,67(5):455-468
The theory of degenerate coding is presented in a way enabling further application to molecular biology. There are two kinds of redundancy of a degenerate code. The first is due to the excess in codon length and the second to the code degeneracy. If the code is asymmetrically degenerate, the second kind of redundancy can be profitable for control of error rate. This control can be performed just by selective synonymous codon usage. Utilisation of the genetic code is partially influenced by this theoretical possibility. In particular the degree of error protectivity is well correlated with deviation from equiprobability in synonymous codon usage. The biological significance of this fact is discussed.  相似文献   

16.
Kim OT  Sakurai A  Saito K  Ito K  Ikehara K  Harumoto T 《Gene》2008,417(1-2):51-58
Stop codon reassignments have occurred very frequently in ciliates. In some ciliate species, the universal stop codons UAA and UAG are translated into glutamine, while in some other species, the universal stop codon UGA appears to be translated into cysteine or tryptophan. The class Litostomatea has been hypothesized to be the only group of ciliates using the universal genetic code. However, the hypothesis was based on a statistical analysis of quite small sequence dataset which was insufficient to elucidate the codon usage of the class among such highly deviated phylum. In this study, together with the updated database sequence analysis for the class, we approached the problem of stop codon usage by examining the capacity of the translation termination factor eRF1 for recognizing stop codons. Using in vivo assay systems in budding yeast, we estimated the activity of eRF1 from two litostome species Didinium nasutum and Dileptus margaritifer. The results clearly showed that Didinium and Dileptus eRF1s efficiently recognize all three stop codons. This is the first experimental evidence that strongly supports the hypothesis that litostome ciliates use universal genetic code.  相似文献   

17.
Reprogramming of the standard genetic code to include non-canonical amino acids (ncAAs) opens new prospects for medicine, industry, and biotechnology. There are several methods of code engineering, which allow us for storing new genetic information in DNA sequences and producing proteins with new properties. Here, we provided a theoretical background for the optimal genetic code expansion, which may find application in the experimental design of the genetic code. We assumed that the expanded genetic code includes both canonical and non-canonical information stored in 64 classical codons. What is more, the new coding system is robust to point mutations and minimizes the possibility of reversion from the new to old information. In order to find such codes, we applied graph theory to analyze the properties of optimal codon sets. We presented the formal procedure in finding the optimal codes with various number of vacant codons that could be assigned to new amino acids. Finally, we discussed the optimal number of the newly incorporated ncAAs and also the optimal size of codon groups that can be assigned to ncAAs.  相似文献   

18.
Although the ‘universal’ genetic code is widespread among life-forms, a number of diverse lineages have evolved unique codon reassignments. The proteomes of these organisms and organelles must, by necessity, use the same codon assignments. Likewise, for an exogenous genetic element, such as an infecting viral genome, to be accurately and completely expressed with the host's translation system, it must employ the same genetic code. This raises a number of intriguing questions regarding the origin and evolution of viruses. In particular, it is extremely unlikely that viruses of hosts utilizing the universal genetic code would emerge, via cross-species transmission, in hosts utilizing alternative codes, and vice versa. Consequently, more parsimonious scenarios for the origins of such viruses include the prolonged co-evolution of viruses with cellular life, or the escape of genetic material from host genomes. Further, we raise the possibility that emerging viruses provide the selection pressure favoring the use of alternative codes in potential hosts, such that the evolution of a variant genetic code acts as a unique and powerful antiviral strategy. As such, in the face of new emerging viruses, hosts with codon reassignments would have a significant selective advantage compared to hosts utilizing the universal code.  相似文献   

19.
Optimality of codon usage in Escherichia coli due to load minimization   总被引:2,自引:0,他引:2  
The canonical genetic code is known to be highly efficient in minimizing the effects of mistranslational errors and point mutations, an ability which in term is designated "load minimization". One parameter involved in calculating the load minimizing property of the genetic code is codon usage. In most bacteria, synonymous codons are not used with equal frequencies. Different factors have been proposed to contribute to codon usage preference. It has been shown that the codon preference is correlated with the composition of the tRNA pool. Selection for translational efficiency and translational accuracy both result in such a correlation. In this work, it is shown that codon usage bias in Escherichia coli works so as to minimize the consequences of translational errors, i.e. optimized for load minimization.  相似文献   

20.
Pioneering studies in the 1960s that elucidated the genetic code suggested that all extant forms of life use the same genetic code. This early presumption has subsequently been challenged by the discovery of deviations of the universal genetic code in prokaryotes, eukaryotic nuclear genomes and mitochondrial genomes. These studies have revealed that the genetic code is still evolving despite strong negative forces working against the fixation of mutations that result in codon reassignment. Recent data from in vitro, in vivo and in silico comparative genomics studies are revealing significant, previously overlooked links between modified nucleosides in tRNAs, genetic code ambiguity, genome base composition, codon usage and codon reassignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号