首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comamonas sp. strain CNB-1 grows on 4-chloronitrobenzene (4-CNB) and nitrobenzene as sole carbon and nitrogen sources. In this study, two genetic segments, cnbB-orf2-cnbA and cnbR-orf1-cnbCaCbDEFGHI, located on a newly isolated plasmid, pCNB1 (ca. 89 kb), and involved in 4-CNB/nitrobenzene degradation, were characterized. Seven genes (cnbA, cnbB, cnbCa, cnbCb, cnbD, cnbG, and cnbH) were cloned and functionally expressed in recombinant Escherichia coli, and they were identified as encoding 4-CNB nitroreductase (CnbA), 1-hydroxylaminobenzene mutase (CnbB), 2-aminophenol 1,6-dioxygenase (CnbCab), 2-amino-5-chloromuconic semialdehyde dehydrogenase (CnbD), 2-hydroxy-5-chloromuconic acid (2H5CM) tautomerase, and 2-amino-5-chloromuconic acid (2A5CM) deaminase (CnbH). In particular, the 2A5CM deaminase showed significant identities (31 to 38%) to subunit A of Asp-tRNAAsn/Glu-tRNAGln amidotransferase and not to the previously identified deaminases for nitroaromatic compound degradation. Genetic cloning and expression of cnbH in Escherichia coli revealed that CnbH catalyzed the conversion of 2A5CM into 2H5CM and ammonium. Four other genes (cnbR, cnbE, cnbF, and cnbI) were tentatively identified according to their high sequence identities to other functionally identified genes. It was proposed that CnbH might represent a novel type of deaminase and be involved in a novel partial reductive pathway for chloronitrobenzene or nitrobenzene degradation.  相似文献   

2.
The 4-amino-3-hydroxybenzoate-assimilating Bordetella sp. strain 10d produces a deaminase that catalyzes the deamination of 2-amino-5-carboxymuconic 6-semialdehyde. A gene encoding the deaminase, ahdB , was cloned and expressed in Escherichia coli; ahdB is located downstream from the previously reported genes encoding 4-amino-3-hydroxybenzoate 2,3-dioxygenase ( ahdA ) and a LysR-type regulator. The deduced amino acid sequence of ahdB shows 30–33% identity to those of previously reported 2-aminomuconate deaminases. We identified a region (RAGDFLXVSG) conserved in AhdB and three other deaminases. The recombinant enzyme AhdB was purified to homogeneity. After a coupled enzyme assay with purified AhdA, AhdB, and the substrate 4-amino-3-hydroxybenzoate, the final product, formed by the action of AhdA, AhdB, and by nonenzymatic decarboxylation, was identified by HPLC, MS, and 1H-nuclear magnetic resonance analyses as 2-hydroxymuconic 6-semialdehyde.  相似文献   

3.
分析了丛毛单胞菌(Comamonas sp.)CNB-1菌株在不同条件下合成聚羟基烷酸(polyhydroxyalkanoic acids,PHAs)的组分和含量,同时克隆了与PHA合成相关的基因。结果表明,该菌可以多种短链有机酸及醇类为碳源合成PHA多聚物或共聚物,以戊酸和1,4-丁二醇为底物时,可达菌体干重的57%;同时发现小分子醇类的存在能显著促进PHA的合成,推测与醇类氧化过程中提供了更多的还原力有关。为了克隆相关基因,利用已知phaC的保守区简并引物筛选基因组文库,将得到的阳性克隆质粒测序,发现phaC、phaA、phaB组成一个基因簇phaC-A-B。将phaC、phaA、phaB连接到pET载体在E.coli中共表达,重组E.coli菌株能合成PHA;将这3个基因单独连接到pET载体,在E.coli中表达后检测到相应酶活,分别约为原始菌株的4.1、71和2882倍。  相似文献   

4.
Comamonas sp. strain CNB-1, isolated from activated sludge and having a strong ability to degrade 4-chloronitrobenzene (4CNB), was applied for rhizoremediation of 4CNB-polluted soil through association with alfalfa. Confocal laser scanning microscopy revealed that strain CNB-1 successfully colonized alfalfa roots. Determination of strain CNB-1 populations by cultivation method and by quantitative competitive PCR technique targeting the chloronitrobenzene nitroreductase gene showed that the population of strain CNB-1 in the rhizosphere was about 10-100 times higher than that in the bulk soil. Gnotobiotic and outdoor experiments showed that pollutant 4CNB was completely removed within 1 or 2 days after 4CNB application into soil, and that its phytotoxicity to alfalfa was eliminated by inoculation of strain CNB-1. Results from PCR-denaturing gradient gel electrophoresis and analysis of 16S rRNA gene libraries revealed that the indigenous soil microbial community mainly consisted of alphaproteobacteria, betaproteobacteria, gammaproteobacteria, the CFB bacteria (Cytophaga-Flavabacterium-Bacteriodes), and Acidobacteria. This microbial community was not significantly influenced by inoculation of strain CNB-1. Thus, this study has developed a Comamonas-alfalfa system for rhizoremediation of 4CNB.  相似文献   

5.
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.  相似文献   

6.
Comamonas sp. strain CNB-1 grows on 4-chloronitrobenzene (4-CNB) and nitrobenzene as sole carbon and nitrogen sources. In this study, two genetic segments, cnbB-orf2-cnbA and cnbR-orf1-cnbCaCbDEFGHI, located on a newly isolated plasmid, pCNB1 (ca. 89 kb), and involved in 4-CNB/nitrobenzene degradation, were characterized. Seven genes (cnbA, cnbB, cnbCa, cnbCb, cnbD, cnbG, and cnbH) were cloned and functionally expressed in recombinant Escherichia coli, and they were identified as encoding 4-CNB nitroreductase (CnbA), 1-hydroxylaminobenzene mutase (CnbB), 2-aminophenol 1,6-dioxygenase (CnbCab), 2-amino-5-chloromuconic semialdehyde dehydrogenase (CnbD), 2-hydroxy-5-chloromuconic acid (2H5CM) tautomerase, and 2-amino-5-chloromuconic acid (2A5CM) deaminase (CnbH). In particular, the 2A5CM deaminase showed significant identities (31 to 38%) to subunit A of Asp-tRNAAsn/Glu-tRNAGln amidotransferase and not to the previously identified deaminases for nitroaromatic compound degradation. Genetic cloning and expression of cnbH in Escherichia coli revealed that CnbH catalyzed the conversion of 2A5CM into 2H5CM and ammonium. Four other genes (cnbR, cnbE, cnbF, and cnbI) were tentatively identified according to their high sequence identities to other functionally identified genes. It was proposed that CnbH might represent a novel type of deaminase and be involved in a novel partial reductive pathway for chloronitrobenzene or nitrobenzene degradation.  相似文献   

7.
Zhang Y  Wu JF  Zeyer J  Meng B  Liu L  Jiang CY  Liu SQ  Liu SJ 《Biodegradation》2009,20(1):55-66
Comamonas sp. strain CNB-1 can utilize 4-chloronitrobenzene (4CNB) as sole carbon and nitrogen source for growth. Previous studies were focused on 4CNB degradative pathway and have showed that CNB-1 contained a plasmid pCNB1 harboring the genes (cnbABCaCbDEFGH, cnbZ) for the enzymes involving in 4CNB degradation, but only three gene products (CnbCa, CnbCb, and CnbZ) were identified in CNB-1 cells. Comamonas strain CNB-2 that lost pCNB1 was not able to grow on 4CNB. In this study, physiological adaptation to 4CNB by CNB-1 was investigated with proteomic and molecular tools. Comparative proteomes of strains CNB-1 and CNB-2 grown on 4CNB and/or succinate revealed that adaptation to 4CNB by CNB-1 included specific degradative pathway and general physiological responses: (1) Seven gene products (CnbA, CnbCa, CnbCb, CnbD, CnbE, CnbF, and CnbZ) for 4CNB degradation were identified in 4CNB-grown cells, and they were constitutively synthesized in CNB-1. Two genes cnbE and cnbF were cloned and simultaneously expressed in E. coli. The CnbE and CnbF together catalyzed the conversion of 2-oxohex-4-ene-5-chloro-1,6-dioate into 2-oxo-4-hydroxy-5-chloro-valeric acid; (2) Enzymes involving in glycolysis, tricarboxylic acid cycle, and synthesis of glutamate increased their abundances in 4CNB-grown cells.  相似文献   

8.
Comamonas testosteroni strain CNB-1 was isolated from activated sludge and has been investigated for its ability to degrade 4-chloronitrobenzene. Results from this study showed that strain CNB-1 grew on phenol, gentisate, vanillate, 3-hydroxybenzoate (3HB), and 4-hydroxybenzoate (4HB) as carbon and energy sources. Proteomic data and enzyme activity assays suggested that vanillate, 3HB, and 4HB were degraded in strain CNB-1 via protocatechuate (PCA) 4,5-cleavage pathway. The genetics and biochemistry of the PCA 4,5-cleavage pathway were investigated. Results showed that the 4-oxalomesaconate (OMA) hydratase from C. testosteroni takes only enol-OMA as substrate. A previously functionally unknown gene pmdU encodes an OMA tautomerase and catalyzes conversion of OMAketo into OMAenol. The 4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase is encoded by pmdF and catalyzes the last step of the PCA 4,5-cleavage pathway. We explored the 1,183 microbial genomes at GenBank for potential PCA 4,5-cleavage pathways, and 33 putative pmd clusters were found. Results suggest that PCA 4,5-cleavage pathways are mainly distributed in α- and β-Proteobacteria.  相似文献   

9.
We investigated the uptake of biphenyl by the psychrotolerant, polychlorinated biphenyl (PCB)-degrader, Pseudomonas sp. strain Cam-1 and the mesophilic PCB-degrader, Burkholderia sp. strain LB400. The effects of growth substrates, metabolic inhibitors, and temperature on [14C]biphenyl uptake were studied. Biphenyl uptake by both strains was induced by growth on biphenyl, and was inhibited by dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which are metabolic uncouplers. The Vmax and Km for biphenyl uptake by Cam-1 at 22 degrees C were 5.4 +/- 1.7 nmol x min(-1) x (mg of cell protein)(-1) and 83.1 +/- 15.9 micromol x L(-1), respectively. The Vmax and Km for biphenyl uptake by LB400 at 22 degrees C were 3.2 +/- 0.3 nmol x min(-1) x (mg of cell protein(-1)) and 51.5 +/- 9.6 micromol x L(-1), respectively. At 15 degrees C, the maximum rate for biphenyl uptake by Cam-1 and LB400 was 3.1 +/- 0.3 nmol x min(-1) x (mg of cell protein)(-1) and 0.89 +/- 0.1 nmol x min(-1) x (mg of cell protein)(-1), respectively. Thus, the maximum rate for biphenyl uptake by Cam-1 at 15 degrees C was more than 3 times higher than that for LB400.  相似文献   

10.
Pseudomonas sp. strain MT1 is capable of degrading 4- and 5-chlorosalicylates via 4-chlorocatechol, 3-chloromuconate, and maleylacetate by a novel pathway. 3-Chloromuconate is transformed by muconate cycloisomerase of MT1 into protoanemonin, a dominant reaction product, as previously shown for other muconate cycloisomerases. However, kinetic data indicate that the muconate cycloisomerase of MT1 is specialized for 3-chloromuconate conversion and is not able to form cis-dienelactone. Protoanemonin is obviously a dead-end product of the pathway. A trans-dienelactone hydrolase (trans-DLH) was induced during growth on chlorosalicylates. Even though the purified enzyme did not act on either 3-chloromuconate or protoanemonin, the presence of muconate cylcoisomerase and trans-DLH together resulted in considerably lower protoanemonin concentrations but larger amounts of maleylacetate formed from 3-chloromuconate than the presence of muconate cycloisomerase alone resulted in. As trans-DLH also acts on 4-fluoromuconolactone, forming maleylacetate, we suggest that this enzyme acts on 4-chloromuconolactone as an intermediate in the muconate cycloisomerase-catalyzed transformation of 3-chloromuconate, thus preventing protoanemonin formation and favoring maleylacetate formation. The maleylacetate formed in this way is reduced by maleylacetate reductase. Chlorosalicylate degradation in MT1 thus occurs by a new pathway consisting of a patchwork of reactions catalyzed by enzymes from the 3-oxoadipate pathway (catechol 1,2-dioxygenase, muconate cycloisomerase) and the chlorocatechol pathway (maleylacetate reductase) and a trans-DLH.  相似文献   

11.
Comamonas strain CNB-1 was isolated from a biological reactor treating wastewater from a p-chloronitrobenzene production factory. Strain CNB-1 used p-chloronitrobenzene as sole source of carbon, nitrogen, and energy. A 2-aminophenol 1,6-dioxygenase was purified from cells of strain CNB-1. The purified 2-aminophenol 1,6-dioxygenase had a native molecular mass of 130 kDa and was composed of - and -subunits of 33 and 38 kDa, respectively. This enzyme is different from currently known 2-aminophenol 1,6-dioxygenases in that it: (a) has a higher affinity for 2-amino-5-chlorophenol (Km=0.77 M) than for 2-aminophenol (Km=0.89 M) and (b) utilized protocatechuate as a substrate. These results suggested that 2-amino-5-chlorophenol, an intermediate during p-chloronitrobenzene degradation, is the natural substrate for this enzyme. N-terminal amino acids of the - and -subunits were determined to be T-V-V-S-A-F-L-V and M-Q-G-E-I-I-A-E, respectively. A cosmid library was constructed from the total DNA of strain CNB-1 and three clones (BG-1, BG-2, and CG-13) with 2-aminophenol 1,6-dioxygenase activities were obtained. DNA sequencing of clone BG-2 revealed a 15-kb fragment that contained two ORFs, ORF9 and ORF10, with N-terminal amino acid sequences identical to those of the - and -subunits, respectively, from the purified 2-aminophenol 1,6-dioxygenase. The enzyme was actively synthesized when the genes coding for the ORF9 and ORF10 were cloned into Escherichia coli.  相似文献   

12.
A 13.9-kb region, which contained the 2-aminophenol 1,6-dioxygenase genes (amnBA) reported before, was cloned from the 2-aminophenol-assimilating bacterium Pseudomonas sp. AP-3. The complete nucleotide sequence of this region was determined and six genes were found downstream of amnBA. The eight genes together were designated amnBACFEDHG. Each gene was similar to the corresponding gene operating in the meta-cleavage pathway, except for amnB, amnA, and amnD. The four 2-aminophenol-metabolizing enzymes, 2-aminomuconic 6-semialdehyde dehydrogenase, 2-aminomuconate deaminase, 4-oxalocrotonate decarboxylase, and 2-oxopent-4-enoate hydratase, were purified and characterized. NH2-terminal amino acid sequences of each purified enzyme agreed with those deduced from amnC, amnF, amnE, and amnD, respectively. These genes were therefore assigned as the genes encoding these respective proteins. The tight clustering of the amn genes, which were all transcribed in the same direction, raised the possibility that these genes formed a single operon. The organization of the amn genes was entirely different from that of the atd, dmp, and xyl genes reported in the meta-cleavage pathway, although these latter genes clustered similarly.  相似文献   

13.
14.
AIMS: To optimize the production condition of chitosanases of Gongronella sp. JG and to characterize the major chitosanase. METHODS AND RESULTS: In the optimized medium and culturing condition, strain JG produced 800 micromol min(-1) l(-1) chitosanase activity at 72 h. The major chitosanase - csn1 was purified through three chromatography steps: CM (carboxymethyl)-Sepharose fast flow (FF), Sephacryl S200, SP (sulfopropyl)-Sepharose FF. The molecular weight and the pI value of csn1 were about 90,000 Da and 5 x 8, respectively. Its specific activity was 82 micromol min(-1) mg(-1). The optimal reaction pH for csn1 was between 4 x 6 and 4 x 8. The optimal reaction temperature was 50 degrees C. The half-life of csn1 at 50 degrees C was estimated to be about 65 min. Mn(2+) was a strong stimulator of csn1 activity, both at 1 and 10 mmol l(-1). csn1 showed its highest activity with chitosan of 85% degree of deacetylation, but did not hydrolyse colloidal chitin and carboxylmethyl cellulose. In 20 mmol l(-1) sodium acetate buffer (pH 4 x 8) and at 50 degrees C, the K(m) of csn1 was calculated to be 4 x 5 mg ml(-1). CONCLUSIONS: The production condition of chitosanases by Gongronella JG was optimized and the major chitosanase, csn1, was characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work for the first time reported the production, purification and characterization of chitosanases produced by fungus of Gongronella sp. These results provided us more information on fungal chitosanases.  相似文献   

15.
The first cloning and characterization of the gene katA, encoding the major catalase (KatA), from Xanthomonas is reported. A reverse genetic approach using a synthesized katA-specific DNA probe to screen a X. campestris pv. phaseoli genomic library was employed. A positively hybridizing clone designated pKat29 that contained a full-length katA was isolated. Analysis of the nucleotide sequence revealed an open reading frame of 1,521 bp encoding a 507-amino acid protein with a theoretical molecular mass of 56 kDa. The deduced amino acid sequence of KatA revealed 84% and 78% identity to CatF of Pseudomonas syringae and KatB of P. aeruginosa, respectively. Phylogenetic analysis places Xanthomonas katA in the clade I group of bacterial catalases. Unexpectedly, expression of katA in a heterologous Escherichia coli host resulted in a temperature-sensitive expression. The KatA enzyme was purified from an overproducing mutant of X. campestris and was characterized. It has apparent K(m) and V(max) values of 75 m M [H(2)O(2)] and 2.55 x 10(5) micromol H(2)O(2) micromol heme(-1) s(-1), respectively. The enzyme is highly sensitive to 3-amino-1,2,4-triazole and NaN(3), has a narrower optimal pH range than other catalases, and is more sensitive to heat inactivation.  相似文献   

16.
Members of the gram-negative, strictly aerobic genus Comamonas occur in various environments. Here we report the complete genome of Comamonas testosteroni strain CNB-2. Strain CNB-2 has a circular chromosome that is 5,373,643 bp long and has a G+C content of 61.4%. A total of 4,803 open reading frames (ORFs) were identified; 3,514 of these ORFs are functionally assigned to energy production, cell growth, signal transduction, or transportation, while 866 ORFs encode hypothetical proteins and 423 ORFs encode purely hypothetical proteins. The CNB-2 genome has many genes for transportation (22%) and signal transduction (6%), which allows the cells to respond and adapt to changing environments. Strain CNB-2 does not assimilate carbohydrates due to the lack of genes encoding proteins involved in glycolysis and pentose phosphate pathways, and it contains many genes encoding proteins involved in degradation of aromatic compounds. We identified 66 Tct and nine TRAP-T systems and a complete tricarboxylic acid cycle, which may allow CNB-2 to take up and metabolize a range of carboxylic acids. This nutritional bias for carboxylic acids and aromatic compounds enables strain CNB-2 to occupy unique niches in environments. Four different sets of terminal oxidases for the respiratory system were identified, and they putatively functioned at different oxygen concentrations. This study conclusively revealed at the genomic level that the genetic versatility of C. testosteroni is vital for competition with other bacteria in its special niches.The members of the genus Comamonas are gram-negative, strict aerobes and frequently occur in diverse habitats, including activated sludge, marshes, marine habitats, and plant and animal tissues (4, 12, 13). They grow on organic acids, amino acids, and peptone, but they rarely attack carbohydrates. Some species, such as Comamonas testosteroni, can also mineralize complex and xenobiotic compounds, such as testosterone (17) and 4-chloronitrobenzene (CNB) (54). Their diversified niches make Comamonas species environmentally important and also suggest that the genus Comamonas represents a group of bacteria that can adapt very well, both ecologically and physiologically, to environments.To understand better how environmental microbes adapt to their environments, many well-known environmental microbes, such as Pseudomonas putida (53) and Rhodococcus sp. strain RAH1 (31), have been sequenced. The genome data for these organisms, as well as other environmental microbes, provide not only an understanding of physiological and environmental functions at the genetic level but also a starting point for systems biology analyses of these microbes. Until now, none of the Comamonas species has been sequenced, although these organisms represent an important group of environmental microbes.C. testosteroni strain CNB-1 was isolated from CNB-contaminated activated sludge and grows with CNB as a sole source of carbon and nitrogen, and it has been used successfully for rhizoremediation of CNB-polluted soil (25). Strain CNB-1 has a circular chromosome and a large plasmid, and the genes involved in the degradation of CNB on plasmid pCNB1 were identified previously (28). In the present study, the genome of strain CNB-2, which was derived from strain CNB-1, was sequenced, and a genome analysis was performed parallel to physiological experiments. The aim of this work was to obtain genetic insight into how C. testosteroni adapts to changing and diverse environments.  相似文献   

17.
Pseudomonas sp. strain MT1 has recently been reported to degrade 4- and 5-chlorosalicylate by a pathway assumed to consist of a patchwork of reactions comprising enzymes of the 3-oxoadipate pathway. Genes encoding the initial steps in the degradation of salicylate and substituted derivatives were now localized and sequenced. One of the gene clusters characterized (sal) showed a novel gene arrangement, with salA, encoding a salicylate 1-hydroxylase, being clustered with salCD genes, encoding muconate cycloisomerase and catechol 1,2-dioxygenase, respectively, and was expressed during growth on salicylate and chlorosalicylate. A second gene cluster (cat), exhibiting the typical catRBCA arrangement of genes of the catechol branch of the 3-oxoadipate pathway in Pseudomonas strains, was expressed during growth on salicylate. Despite their high sequence similarities with isoenzymes encoded by the cat gene cluster, the catechol 1,2-dioxygenase and muconate cycloisomerase encoded by the sal cluster showed unusual kinetic properties. Enzymes were adapted for turnover of 4-chlorocatechol and 3-chloromuconate; however, 4-methylcatechol and 3-methylmuconate were identified as the preferred substrates. Investigation of the substrate spectrum identified 4- and 5-methylsalicylate as growth substrates, which were effectively converted by enzymes of the sal cluster into 4-methylmuconolactone, followed by isomerization to 3-methylmuconolactone. The function of the sal gene cluster is therefore to channel both chlorosubstituted and methylsubstituted salicylates into a catechol ortho cleavage pathway, followed by dismantling of the formed substituted muconolactones through specific pathways.  相似文献   

18.
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30 degrees C, were 0.3-1.1 micromol min(-1) (mg protein)(-1), with a Km for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass)(-1) h(-1), respectively.  相似文献   

19.
The ispC gene of Arabidopsis thaliana was expressed in pseudomature form without the putative plastid-targeting sequence in a recombinant Escherichia coli strain. The recombinant protein was purified by affinity chromatography and was shown to catalyze the formation of 2C-methyl-D-erythritol 4-phosphate from 1-deoxy-D-xylulose 5-phosphate at a rate of 5.6 micromol x min(-1) x mg(-1) (k(cat) 4.4 s(-1)). The Michaelis constants for 1-deoxy-D-xylulose 5-phosphate and the cosubstrate NADPH are 132 and 30 microm, respectively. The enzyme has an absolute requirement for divalent metal ions, preferably Mn2+ and Mg2+, and is inhibited by fosmidomycin with a Ki of 85 nm. The pH optimum is 8.0. NADH can substitute for NADPH, albeit at a low rate (14% as compared to NADPH). The enzyme catalyzes the reverse reaction at a rate of 2.1 micromol x min(-1) x mg(-1).  相似文献   

20.
The Arabidopsis thaliana open reading frame At4g20960 predicts a protein whose N-terminal part is similar to the eubacterial 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate deaminase domain. A synthetic open reading frame specifying a pseudomature form of the plant enzyme directed the synthesis of a recombinant protein which was purified to apparent homogeneity and was shown by NMR spectroscopy to convert 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate into 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate at a rate of 0.9 micromol mg(-1) min(-1). The substrate and product of the enzyme are both subject to spontaneous anomerization of the ribosyl side chain as shown by (13)C NMR spectroscopy. The protein contains 1 eq of Zn(2+)/subunit. The deaminase activity could be assigned to the N-terminal section of the plant protein. The deaminase domains of plants and eubacteria share a high degree of similarity, in contrast to deaminases from fungi. These data show that the riboflavin biosynthesis in plants proceeds by the same reaction steps as in eubacteria, whereas fungi use a different pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号