首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DO-transient nutrient controllers use the dissolved oxygen signal to attempt acetate threshold tracking during fed-batch cultivation of recombinant E. coli. Here we apply DO-transient control to the production of Jembrana disease virus protein in complex Super Luria medium and compare performance against a high-limit pH-stat controller. For induction at medium cell density (harvest between 31 and 32.5 g dcw L) a total productivity of 0.27 g L h was achieved as compared to 0.24 g L h with the high-limit pH-stat. For induction at high cell density (harvest at 60 g dcw L), decreased productivity (0.12 g L h) was attributed to the effect of acetate accumulation on recombinant protein formation and a concomitant lowering of the critical growth rate. Our results suggest that complex media provides a difficult environment for the application of acetate threshold tracking DO-transient control because of difficulties in re-oxidizing acetate, and apparent localized production of acetate below the production threshold (as detected by the DO-transient controller as SPOUR(crit)). Configuring the DO-transient controller to avoid aggressive threshold probing is suggested as a means to improve performance and reduce acetate accumulation in complex media.  相似文献   

2.
The temperature-induced, over-expression of the human growth hormone gene in a recombinant E. coli during high cell density cultivation is reported. Human growth hormone (hGH) production and stability were tested under different heat shock conditions. Cell densities were 25 and 60 g l(-1) in a pH-stat fed-batch mode in defined and complex medium, respectively, and the fermentation time was decreased from 41 to 32 h. hGH was produced at 2 g l(-1) in complex medium. By using glycerol as main carbon source in the complex medium with exponential feeding, cell density and hGH production were increased to 100 g l(-1) and 2.7 g l(-1), respectively.  相似文献   

3.
Recombinant Escherichia coli strain C600/pBV-TRAIL (encoding for 114-281 amino acids of TRAIL's soluble fragment) produced a recombinant human tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL). Using a combined strategy of exponential feeding and pH-stat feeding, high concentrations of biomass (65 g dry wt l(-1)) and active soluble TRAIL (1.4 g l(-1)) were obtained within 30 h. The accumulation of acetate, which usually occurs during the process of high-density culture of Escherichia coli and especially in the induction stage of protein synthesis, was avoided.  相似文献   

4.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

5.
Pseudomonas putida KT2440-JD1 is able to cometabolize benzoate to cis, cis-muconate in the presence of glucose as growth substrate. P. putida KT2440-JD1 was unable to grow in the presence of concentrations above 50 mM benzoate or 600 mM cis, cis-muconate. The inhibitory effects of both compounds were cumulative. The maximum specific uptake rate of benzoate was higher than the specific production rate of cis, cis-muconate during growth on glucose in the presence of benzoate, indicating that a benzoate derivative accumulated in the cells, which is likely to be catechol. Catechol was shown to reduce the expression level of the ben operon, which encodes the conversion of benzoate to cis, cis-muconate. To prevent overdoses of benzoate, a pH-stat fed-batch process for the production of cis, cis-muconate from benzoate was developed, in which the addition of benzoate was coupled to the acidification of the medium. The maximum specific production rate during the pH-stat fed-batch process was 0.6 g (4.3 mmol) g dry cell weight(-1) h(-1), whereas 18.5 g L(-1) cis, cis-muconate accumulated in the culture medium with a molar product yield of close to 100%. Proteome analysis revealed that the outer membrane protein H1 was upregulated during the pH-stat fed-batch process, whereas the expression of 10 other proteins was reduced. The identified proteins are involved in energy household, transport, translation of RNA, and motility.  相似文献   

6.
An improved expression plasmid pET-insulin-like growth factor-2 (IGF2) was constructed and transferred into Escherichia coli BL21(DE3) for the expression of tilapia insulin-like growth factor-2. The recombinant insulin-like growth factor-2 was produced as inclusion bodies, and the recombinant insulin-like growth factor-2 content was as high as 10.3% of the total protein content. For production of recombinant insulin-like growth factor-2 in E. coli, pH-stat fed-batch cultures were used to achieve a high cell density culture. A cell concentration 183gl(-1) dry cell weight (DCW) was obtained after 30h cultivation and plasmid stability was maintained at high levels. Expression of insulin-like growth factor-2 was induced at three different cell concentrations, 50, 78.5, and 114.5gl(-1) dry cell weight. When cells were induced at a cell concentration of 114.5gl(-1) dry cell weight, the amount of insulin-like growth factor-2 produced was 9.69gl(-1) (11.3% of the total protein). Using a simple purification process including inclusion body isolation, denaturation, refolding and Ni-NTA affinity chromatography, 19.51mg of insulin-like growth factor-2 was obtained from a 22.5ml of culture, and the recovery yield was 20.5%. The biological activity of the purified IGF-2 was demonstrated as promoting the growth of four different cell lines by the colorimetric bioassay and the best growth stimulation ratio was obtained for the Balb/3T3 clone 31A cell line.  相似文献   

7.
Acetate formation is a disadvantage in the use of Escherichia coli for recombinant protein production, and many studies have focused on optimizing fermentation processes or altering metabolism to eliminate acetate accumulation. In this study, E. coli MEC697 (MG1655 nadR nudC mazG) maintained a larger pool of NAD(H) compared to the wild‐type control, and also accumulated lower concentrations of acetate when grown in batch culture on glucose. In steady‐state cultures, the elevated total NAD(H) found in MEC697 delayed the threshold dilution rate for acetate formation to a growth rate of 0.27 h?1. Batch and fed‐batch processes using MEC697 were examined for the production of β‐galactosidase as a model recombinant protein. Fed‐batch culture of MEC697/pTrc99A‐lacZ compared to MG1655/pTrc99A‐lacZ at a growth rate of 0.22 h?1 showed only a modest increase of protein formation. However, 1 L batch growth of MEC697/pTrc99A‐lacZ resulted in 50% lower acetate formation compared to MG1655/pTrc99A‐lacZ and a two‐fold increase in recombinant protein production.  相似文献   

8.
This study determines the growth kinetics of thermophilic strains of Methanosarcina spp. from full-scale thermophilic biogas plants. The complete set of kinetic parameters, including maximum specific growth rate μ(max), half saturation constant K(S), acetate threshold concentration and cell growth yield Y(X/S), were determined for six Methanosarcina strains newly isolated from full-scale reactors and the type strain Methanosarcina thermophila TM-1(T). The kinetic experiments were performed in media supplemented with acetate and activated carbon at the optimum growth temperatures of the individual strains, 50-55 degrees C. The μ(max) values of the isolates were in the range of 0.044-0.064 h(-1), the K(S) ranged from 6.5 to 24.7 mM acetate and the threshold for acetate utilization from 0.11 to 0.40 mM. The cell growth yields of the strains were between 0.78 and 2.97 g dry weight cells mol(-1) acetate. The six isolates exhibited significantly higher μ(max) and had higher affinity to acetate than the type strain M. thermophila TM-1(T). Generally, the affinities of thermophilic Methanosarcina strains tested in this study cover a similar range to those reported in the literature for mesophilic Methanosarcina spp. with acetate as substrate. The strains isolated from plants treating mixtures of animal manures and industrial organic wastes had higher affinity for acetate and lower thresholds than strains isolated from reactors operating solely on manures.  相似文献   

9.
A recombinant Bacillus megaterium strain showed the ability to secrete large amounts of pyruvate (up to 27.8 gl( -1)) for growth rates larger than 0.15 h(-1). Cultivation below this growth rate avoids pyruvate formation while minimizing acetate and succinate production. Using exponential feeding, final biomass concentrations of up to 80 g l(-1) were achieved. Overall molar yields for the experiments with pyruvate formation were as high as 0.79 mol mol(-1). Pyruvate formation was caused by the discrepancy between glycolytic and pyruvate dehydrogenase reaction/tricarboxylic acid cycle capacities during glucose excess. High pyruvate resulted in deceleration and subsequent cessation of growth. In addition, this inhibitory effect is likely associated with the phoshoenolpyruvate:glucose phosphotransferase system used by B. megaterium as the main importer for glucose.  相似文献   

10.
Recombinant ovine interferon-tau (r-oIFN-tau) production by Pichia pastoris was studied using methanol as the sole carbon source during induction. The cells were grown on glycerol up to a certain cell density before induction of the AOX1 promoter by methanol for expression of the recombinant protein. Cell growth on methanol has been modeled using a substrate-feed equation, which served as the basis for an effective computer control of the process. The r-oIFN-tau concentration in the culture began to decline despite continued cell growth after 50 (+/- 6) h of induction, which was associated with an increase in proteolytic activity of the fermentation broth. A specific growth rate of 0.025 h(-1) was found to be optimal for r-oIFN-tau production. No significant improvement in r-oIFN-tau production was observed when the specific growth rate was stepped up before the critical point when r-oIFN-tau concentration started decreasing during fermentation. However, best results were obtained when the specific growth rate was stepped down from 0.025 to 0.02 h(-1) at 38 h of induction, whereby the active production period was prolonged until 70 h of induction and the broth protease activity was correspondingly reduced. The corresponding maximum protein yield was 391.7 mg x L(-1) after 70 h of fermentation. The proteolytic activity could be reduced by performing fermentations at specific growth rates of 0.025 h(-1) or below. The recombinant protein production can be performed at an optimal yield by directly controlling the methanol feed rate by a computer-controlled model. The production profile of r-oIFN-tau was found to be significantly different from other secreted and intracellular recombinant protein processes, which is an indication that recombinant protein production in Pichia pastoris needs to be optimized as individual processes following established principles.  相似文献   

11.
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein.  相似文献   

12.
Most recombinant proteins generated in filamentous fungi are produced in fed-batch cultures, in which specific growth rate normally decreases progressively with time. Because of this, such cultures are more suited to the production of products that are produced efficiently at low-growth rates (e.g., penicillin) than to products which are produced more efficiently at high-growth rates (e. g., glucoamylase). Fusarium venenatum A3/5 has been transformed (JeRS 325) to produce Aspergillus niger glucoamylase (GAM) under the control of the Fusarium oxysporum trypsin-like protease promoter. No glucoamylase was detected in the culture supernatant during exponential growth of F. venenatum JeRS 325 in batch culture. In glucose-limited chemostat cultures, GAM concentration increased with decrease in dilution rate, but the specific production rate of GAM (g GAM [g biomass](-1) h(-1)) remained approximately constant over the dilution-rate range 0.05 h to 0.19 h(-1), i.e., the recombinant protein was produced in a growth-rate-independent manner. The specific production rate decreased at dilution rates of 0.04 h(-1) and below. Specific production rates of 5.8 mg and 4.0 mg GAM [g biomass](-1) h(-1) were observed in glucose-limited chemostat cultures in the presence and absence of 1 g mycological peptone L(-1). Compared to production in batch culture, and for the same final volume of medium, there was no increase in glucoamylase production when cultures were grown in fed-batch culture. The results suggested that a chemostat operated at a slow dilution rate would be the most productive culture system for enzyme production under this trypsin-like promoter.  相似文献   

13.
E. coli cells produce acetate as an extracellular coproduct of aerobic cultures. Acetate is undesirable because it retards growth and inhibits protein formation. Most process designs or genetic modifications to minimize acetate formation aim at balancing growth rate and oxygen consumption. In this research, three genetic approaches to reduce acetate formation were investigated: (1) direct reduction of the carbon flow to acetate (ackA-pta, poxB knock-out); (2) anticipation on the underlying metabolic and regulatory mechanisms that lead to acetate (constitutive ppc expression mutant); and (3) both (1) and (2). Initially, these mutants were compared to the wild-type E. coli via batch cultures under aerobic conditions. Subsequently, these mutants were further characterized using metabolic flux analysis on continuous cultures. It is concluded that a combination of directly reducing the carbon flow to acetate and anticipating on the underlying metabolic and regulatory mechanism that lead to acetate, is the most promising approach to overcome acetate formation and improve recombinant protein production. These genetic modifications have no significant influence on the metabolism when growing the micro-organisms under steady state at relatively low dilution rates (less than 0.4 h(-1)).  相似文献   

14.
Human interferon-gamma (hIFN-gamma) was expressed in Escherichia coli BL21(DE3) under the control of the T7 promoter. Glucose was used as the sole source of carbon and energy with simple exponential feeding rate in fed-batch process. Cell density of recombinant E. coli was reached to 100 g dry wt l(-1) under both constant (0.12 h(-1)) and variable (0.12-0.52 h(-1)) specific growth rates. In the variable specific growth rate fed-batch process, plasmid stability and specific yield of rhIFN-gamma were greater than constant specific growth rate fed-batch process. The final specific yield and overall productivity of rhIFN-gamma were 0.35 +/- 0.02 g rhIFN-gamma g(-1) dry cell wt and 0.9 +/- 0.05 g rhIFN-gamma l(-1) h(-1) in the variable specific growth rate fed-batch process, respectively.  相似文献   

15.
A-two stage culture method of hydrogen-oxidizing bacterium, Alcaligenes eutrophus, is used to produce poly-D-3-hydroxybutyrate, P(3HB) from CO2, O2, and H2 without using a very high oxygen transfer rate while maintaining the O2 concentration in gas phase below 6.9 (v/v)% to prevent detonation of the gas mixture. The two-stage method consists of a heterotrophic culture using fructose as carbon source for exponential cell growth and an autotrophic culture for P(3HB) accumulation. We investigated the use of acetic acid as a cheaper carbon source than fructose for the heterotrophic culture in the two-stage method. However, the acetate concentration in the culture system must be maintained at 1.0 g. dm-3 since its inhibitory effect on the cell growth is very strong. Then, high cell density cultivation of A. eutrophus was investigated by pH-stat continuous feeding of acetic acid to control acetate concentration. As a result, acetate concentration was automatically maintained around 1.0 g. dm-3 by using a feed with a composition in CH3COOH/CH3COONH4/KH2PO4 molar ratio of 5:1:0.084. Cell concentration increased to 48.6 g. dm-3 after 21 h of cultivation. The cell mass grown in the fed-batch culture on acetic acid was useful for P(3HB) production from CO2 in the subsequent autotrophic culture stage. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

16.
A single-stage fed-batch bioprocess for the production of a recombinant protein beta-galactosidase, by E. coli has been developed. The XL1-blue strain of E. coli which harbors a multi-number foreign plasmid PT was cultured in a reformulated medium. Critical medium components were selected and their respective concentrations were optimized with the Orthogonal Table method. An exponential substrate feeding schedule was used to maintain optimum conditions. Inhibition of growth and protein expression caused by excessive concentrations of glucose and acetate was investigated and subsequently minimized with an incremental nutrient feeding schedule which limited the specific growth rate of a culture. The program necessary to facilitate the control of substrate addition is fully described. This program has been used with a 2.5 l bioreactor and a commercially available software package for optimization without on-line or off-line measurement of optical density (OD), CO2, glucose or acetate. The optimized fed-batch process limited the acetate concentration to less than 20 mM; maintained an exponential growth phase for 50 h; and produced a cell density of 51 g l-1 dry cell weight (DCW) or 154 OD600 with a beta-galactosidase activity of 990 U ml-1.  相似文献   

17.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

18.
A fed-batch process for the high cell density cultivation of Escherichia coli Rosetta (DE3) and the production of the recombinant protein glycine oxidase (GOX) from Bacillus subtilis was developed. GOX is a deaminating enzyme that shares substrate specificity with d-amino acid oxidase and sarcosine oxidase and has great biotechnological potential. The B. subtilis gene coding for GOX was expressed in E. coli Rosetta under the strong inducible T7 promotor of the pET28a vector. Exponential feeding based on the specific growth rate and a starvation period for acetate utilization was used to control cell growth, acetate production, and reconsumption and glucose consumption during fed-batch cultivation. Expression of GOX was induced at three different cell densities (20, 40, and 60 g . L(-1)). When cells were induced at intermediate cell density, the amount of GOX produced was 20 U . g(-1) cell dry weight and 1154 U . L(-1) with a final intracellular protein concentration corresponding to approximately 37% of the total cell protein concentration. These values were higher than those previously published for GOX expression and also represent a drastic decrease of 26-fold in the cost of the culture medium.  相似文献   

19.
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 ± 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.  相似文献   

20.
Methanobacterium espanolae, an acidiphilic methanogen, required acetate for maximal growth on H(2)-CO(2). In the presence of 5 to 15 mM acetate, at a growth pH of 5.5, the mu(max) was 0.05 h. M. espanolae consumed 12.3 mM acetate during 96 h of incubation at 35 degrees C with shaking at 100 rpm. At initial acetate levels of 2.5 to 10.0 mM, the amount of biomass produced was dependent on the amount of acetate in the medium. C nuclear magnetic resonance spectra of protein hydrolysates obtained from cultures grown on [1-C]- or [2-C]acetate indicated that an incomplete tricarboxylic acid pathway, operating in the reductive direction, was functional in this methanogen. The amino acids were labeled with a very high degree of specificity and at greater than 90% enrichment levels. Less than 2% label randomization occurred between positions primarily labeled from either the carboxyl or methyl group of acetate, and very little label was transferred to positions primarily labeled from CO(2). The labeling pattern of carbohydrates was typical for glucogenesis from pyruvate. This methanogen, by virtue of the properties described above and its ability to incorporate all of the available acetate (10 mM or lower) from the growth medium, has advantages over other microorganisms for use in the production of specifically labeled compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号