首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric fields induced in a conductive body by the magnetic field of a current-carrying wire were analyzed theoretically and experimentally to assess the dosimetric importance of highly nonuniform, field-exposure conditions. Experimentation revealed that a 60-Hz magnetic field was inversely proportional to the radius of a wire bundle carrying 100 A within a 0.5-m2 test area. A miniaturized electric field probe was used to measure the electric fields induced in 5-cm-deep, saline-filled models. In the theoretical analysis, numerical estimates of induced fields were made by a spreadsheet method. The theoretical calculations and the measured values of induced electric fields were generally in good agreement. The induced fields were in a plane perpendicular to a vertically incident magnetic field; the maximally induced fields were in areas nearest the wire bundle. The strength of the induced field increased with model size: from 96 microV/cm in a 10 x 10 cm model to 176 microV/cm in a 40 x 40 cm model. The strength of the field induced in a 20 x 20 cm model decreased with increasing model-to-wire spacing: from 132 microV/cm for a 1-cm spacing (2-mT maximum, incident field) to 50 microV/cm for a 6-cm spacing (0.33-mT maximum). The results indicate that increases in local values of nonuniformly incident fields produce relatively small increases in induced electric fields. This finding may be important in dosimetric consideration of circumstances, such as use of electric blankets, in which fields of low average strength are accompanied by intense local fields.  相似文献   

2.
Calculations of the induced currents created in the human body by external electromagnetic fields would be more accurate provided that more realistic experimental values of the electrical properties of the body were available. The purpose of this work is to experimentally obtain values for the conductivity of living organs in conditions close to the real situation. Two‐electrode in vivo measurements of the bioimpedance of some porcine organs have been performed. From these measurements and taking into account geometrical considerations, the electrical conductivity for the kidney, liver, heart, and spinal cord has been obtained and were found to be higher than the values reported in the literature. Furthermore, a new experimental procedure is proposed where the conductivity is determined from the values of the electrical potential and currents that are induced by an external electromagnetic field created by a coil placed close to the organ under study. Bioelectromagnetics 33:612–619, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Specific absorption rate (SAR) was measured in models of the human head exposed to hand-held portable radios ("transceivers") transmitting at frequencies in the 800-MHz band. An isotropic implantable electric-field probe was used to measure internal fields induced in the head models, and SARs were determined by calculation. As well as determining representative values and distributions for SARs under various conditions, it was shown that antenna type and orientation with respect to the head are important factors affecting energy absorption.  相似文献   

4.
We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.  相似文献   

5.
The calculated distribution of electric fields induced in homogeneous human and rat models by a 60-Hz magnetic field is compared with values measured in instrumented mannequins. The calculated values agree well with measured values.  相似文献   

6.
A general method is suggested for the implementation of polarization in molecular dynamics simulations of small molecules. Induced dipole moments are evaluated on selected polarizability centers and represented by separation of charges. The positive polarization charges reside on the selected atoms. The negative polarization charges are treated as additional particles. The positions of these polarization charges are determined from the electrical fields due to the permanent charges of the system. Thus the induction is treated explicitly, while the higher order contributions, the polarization due to induced dipoles, are taken into account in an average way by modification of potential parameters. The forces can be evaluated for the new charge distribution in the conventional way. As an illustration of this approach initial results are reported for the development of a polarizable water model. The higher order polarization is treated in an average way by slight increase of the permanent charges as compared to the values that would give the gas phase dipole moment. The increase in CPU time is comparable to the addition of one atom per polarizable center.  相似文献   

7.
8.
In this study, the extremely low frequency (ELF) fields induced in the human head by the battery currents of a mobile phone are considered. The magnetic field induced by the phone was measured, and this data was used to calculate the resulting currents induced in the human head and brain. Both the finite element method (FEM) and finite integration technique (FIT) were used for numerical computations. The computed current density values were then compared with the guidelines given by the International Commission on Non-Ionising Radiation Protection (ICNIRP). The comparison showed that the computed exposure is well within the limits of those guidelines.  相似文献   

9.
Eskov  E. K. 《Biophysics》2020,65(3):479-486

Bees, wasps, and ants have no specialized receptors for the perception of an electric field. An appropriate response to naturally occurring electric fields in bees and ants is associated with atmospheric exposure, amplified by the approach of the front of a thunderstorm. The primary transducers of mechanoreceptors that respond to displacement are related to the perception of low-frequency electric fields of high intensity by insects. The non-specific mechanism of perception of electric fields is based on irritation by induced currents that flow in the locations of their contact with each other and/or conductive surfaces. The frequency dependence of the electric field sensitivity is determined mainly by the magnitude of the current induced by it and the intensity of its contact action. The magnitude of the current induced in the outer part of the insect body is non-linearly related to the frequency of the electric field. The region with the highest sensitivity to electric fields is close to 500 Hz, which is consistent with the maximum magnitude of the induced current. At the same time, the threshold of the sensitivity to an electric field in wasps is approximately 0.04 kV/m, while in bees it is 0.45 kV/m. Ants react to the action of an electric field of 7–10 kV/m by slowing their movement. Magnetic fields and ionization, which accompany the generation of an electric field whose intensity reaches 15–20 kV/m, do not stimulate changes in the behavior of insects.

  相似文献   

10.
The development of scientifically sound instrumentation, methods, and procedures for the electromagnetic exposure assessment of compact fluorescent lamps (CFLs) is investigated. The incident and induced fields from 11 CFLs have been measured in the 10 kHz–1 MHz range, and they are compared with the levels for incandescent and light emitting diode (LED) bulbs. Commercially available equipment was used to measure the incident fields, while a novel sensor was built to assess the induced fields in humans. Incident electric field levels significantly exceed the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) reference levels at close distances for some sources, while the induced fields are within the ICNIRP basic restrictions. This demonstrates the importance of assessing the induced fields rather than the incident fields for these sources. Maximum current densities for CFLs are comparable to the limits (in the range of 9% to 56%), demonstrating the need for measurements to establish compliance. For the frequency range investigated, the induced fields were found to be considerably higher for CFLs than for incandescent light bulbs, while the exposure from the two LED bulbs was low. The proposed instrumentation and methods offer several advantages over an existing measurement standard, and the measurement uncertainty is significantly better than the assessment of electric and magnetic fields at close distances. Bioelectromagnetics 33:166–175, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The specific absorption rate (SAR) measurements are carried out for compliance testing of personal 3G Mobile phone. The accuracy of this experimental setup has been checked by comparing the SAR in 10 gm of simulated tissue and an arbitrary shaped box. This has been carried out using a 3G mobile Phone at 1718.5 MHz, in a medium simulating brain and muscle phantom. The SAR measurement system consists of a stepper motor to move a monopole E-field probe in two dimensions inside an arbitrary shaped box. The phantom is filled with appropriate frequency-specific fluids with measured electrical properties (dielectric constant and conductivity). That is close to the average for gray and white matters of the brain at the frequencies of interest (1718.5 MHz). Induced fields are measured using a specially designed monopole probe in its close vicinity. The probe is immersed in the phantom material. The measured data for induced fields are used to compute SAR values at various locations with respect to the mobile phone location. It is concluded that these SAR values are position dependent and well below the safety criteria prescribed for human exposure.  相似文献   

12.
The specific absorption rate (SAR) measurements are carried out for compliance testing of personal 3G Mobile phone. The accuracy of this experimental setup has been checked by comparing the SAR in 10?gm of simulated tissue and an arbitrary shaped box. This has been carried out using a 3G mobile Phone at 1718.5?MHz, in a medium simulating brain and muscle phantom. The SAR measurement system consists of a stepper motor to move a monopole E-field probe in two dimensions inside an arbitrary shaped box. The phantom is filled with appropriate frequency-specific fluids with measured electrical properties (dielectric constant and conductivity). That is close to the average for gray and white matters of the brain at the frequencies of interest (1718.5?MHz). Induced fields are measured using a specially designed monopole probe in its close vicinity. The probe is immersed in the phantom material. The measured data for induced fields are used to compute SAR values at various locations with respect to the mobile phone location. It is concluded that these SAR values are position dependent and well below the safety criteria prescribed for human exposure.  相似文献   

13.
It is widely accepted that moderate levels of nonionizing electric or magnetic fields, for example 50/60 Hz magnetic fields of about 1 mT, are not mutagenic. However, it is not known whether such fields can enhance the action of known mutagens. To explore this question, a stringent experimental protocol, which included blinding and systematic negative controls, was implemented, minimizing the possibility of observer bias or experimental artifacts. As a model system, we chose to measure mutation frequencies induced by 2 Gy gamma rays in the redox-sensitive hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in Chinese hamster ovary cells. We tested whether a 12-h exposure to a 60 Hz sinusoidally oscillating magnetic-flux density (Brms = 0.7 mT) could affect the mutagenic effects of ionizing radiation on the HPRT gene locus. We determined that the magnetic-field exposure induced an approximate 1.8-fold increase in HPRT mutation frequency. Additional experiments at Brms = 0.23 and 0.47 mT revealed that the effect was reduced at lower flux densities. The field exposure did not enhance radiation-induced cytotoxicity or mutation frequencies in cells not exposed to ionizing radiation. These results suggest that moderate-strength, oscillating magnetic fields may act as an enhancer of mutagenesis in mammalian cells.  相似文献   

14.
Some properties of induced electric fields in cell culture media produced by vertical circularly polarized magnetic fields are examined. The described geometry is not advantageous for determining effects that may be attributable to induced electric fields or currents. Bioelectromagnetics 18:524–526, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

15.
In recent years, with the availability of high resolution models of the human body, numerical computations of induced electric fields and currents have been made in more than one laboratory for various exposure conditions. Despite the verification of computational methods, questions are often asked about the reliability of these data. In this paper, computational results from two laboratories that presented data in compatible formats are compared, supplemented with additional data from the third laboratory. Two exposures to uniform fields at 60 Hz are evaluated. The human body models used in the computations are different and so are the computation al methods and codes. There are some differences in the conductivity values used for some of the tissues, as well. The results of the comparison confirm that these data are reliable, as the overall agreement is reasonably good and the differences can be rationally explained. This comparison also underscores the importance of accurate data on the dielectric properties of tissues.  相似文献   

16.
Dietmar Prschke 《Biopolymers》1976,15(10):1917-1928
Single-stranded polynucleotides are used as model systems for the investigation of conformational changes induced by electric fields. It is demonstrated that the single-strand helix–coil transition in poly(A), poly(dA), and poly(C) can be induced by application of high electric fields. The transition is measured by UV absorbance using polarized light at an angle of 54.8° with respect to the vector of the electric field and by electrodichroism. A linear increase of the absorbance, reflecting the helix-to-coil transition, is observed at increasing field strength. When ions are added to the polymer, electric fields do not induce conformation changes, unless a threshold value of the electric field strength E0 is exceeded. At field strengths above this threshold, the degree of transition is a linear function of the increase in field strength. The threshold values E0 show a linear increase with the logarithm of the ion concentration. Bivalent ions cause thresholds at much lower ion concentrations than mo-novalent ions. The shielding efficiency of ions is correlated to the binding affinity of these ions to the polymer. The conformation changes induced by the field and the existence of thresholds can be explained on the basis of dissociation field effects. Similar threshold effects may be expected for other macromolecules as well as for membrane structures and may be important in the regulation of bioelectricity.  相似文献   

17.
The effects of the configuration and temperature on the Young’s modulus of poly (methyl methacrylate) (PMMA) have been studied using molecular dynamics simulations. For the DREIDING force field under ambient temperatures, increasing the number of monomers significantly increases the modulus of isotactic and syndiotactic PMMA while the isotactic form has a greater modulus. The effects of temperature on the modulus of isotactic PMMA have been simulated using the DREIDING, AMBER, and OPLS force fields. All these force fields predict the effects of temperature on the modulus from 200 to 350 K that are in close agreement with experimental values, while at higher temperatures the moduli are greater than those measured. The glass transition temperature determined by the force fields, based on the variation of the modulus with temperature, is greater than the experimental values, but when obtained from a plot of the volume as a function of the temperature, there is closer agreement. The Young’s moduli calculated in this study are in closer agreement to the experimental data than those reported by previous simulations.  相似文献   

18.
Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate of about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32–95 Hz. When the rats were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface (where induced fields were maximal). Within the body, or in different directions relative to the applied field, the induced fields were reduced (reaching zero at the center of the animal). The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals. Bioelectromagnetics 18:317–323, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Identifying distortions produced by commonly employed microscope objectives and their components in uniform DC and 60 Hz AC magnetic fields is important in imaging studies involving exposure of cells to spatially uniform or nonuniform magnetic fields. In this study, DC and 60 Hz AC magnetic flux densities were numerically computed in the presence of finite element models of various components of commonly utilized microscope objectives, as well as a model of a complete objective. Also computed were the distortions in the current density induced by an applied time-varying magnetic field in a physiological buffer contained within a Petri dish. We show that the magnetic flux density could be increased up to 65% in the presence of the nickel-chrome plating of an objective housing and that the presence of ferromagnetic components like a screw or spring could produce peaks that are 7% higher than the undistorted value of magnetic flux density. In addition, a slight tilt of 1% in the objective with respect to the magnetic field could cause a 93% deviation in magnetic flux density from the unperturbed value. These results correlate well with previously published experimental measurements that showed the presence of significant and sometimes asymmetric distortions in both DC and 60 Hz magnetic fields. Moreover, this study further reports that induced current density changed up to 37% compared to values in the absence of the objective. The existence of distortions in applied magnetic fields and induced currents could affect the interpretation of results of cell function studies if it is assumed that the cells are exposed to uniform magnetic flux densities in the presence of a microscope objective. Such assumptions of uniform magnetic flux density could also account for the lack of reproducibility in several studies that examined changes in intracellular calcium by imaging techniques.  相似文献   

20.
Chicken eggs are convenient models for observing the effects of inhomogeneities and variations, such as those found in biological membranes and in cellular conductivities, on the distribution of internal electric fields as induced by exposure to magnetic fields. The vitelline membrane separates the yolk, which has a conductivity of 0.26 S/m, from the white, which has a conductivity of 0.85 S/m. A miniaturized probe with 2.4-mm resolution was used to measure induced fields in eggs placed in a uniform, 1-mT magnetic field at 60 Hz. The E fields induced in eggs with homogenized contents agreed with expectations based on simple theory. Results were similar to intact eggs unless the probe moved the yolk off-center, which greatly perturbed the induced fields. A more reproducible arrangement, which consisted of saline-agar filled dishes with a hole cut for test samples, was developed to enhance definition of electrical parameters. With this test system, the vitelline membrane was found to be responsible for most of the perturbation of the induced field, because it electrically isolates the yolk from the surrounding white. From a theoretical viewpoint, this dosimetry for the macroscopic egg yolk is analogous to the interaction of fields with microscopic cells. These findings may have important implications for research on biological effects of ELF electromagnetic fields, especially for studies of avian embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号