首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pulmonary fibrosis, characterized by excess deposition of extracellular matrix by myofibroblasts, is a serious component of chronic lung diseases. Cadherin-11 (CDH11) is increased in wound healing and fibrotic skin. We hypothesized that CDH11 is increased in pulmonary fibrosis and contributes its development. CDH11 expression was assessed in lung tissue from idiopathic pulmonary fibrosis patients. The role of CDH11 in lung fibrosis was determined using the bleomycin model of pulmonary fibrosis, and in vitro analyses were performed on A549 cells during the process of epithelial to mesenchymal transition (EMT). Immunohistochemical studies demonstrated CDH11 expression on fibroblasts, epithelial cells, and alveolar macrophages of patients with pulmonary fibrosis and mice given bleomycin. Interestingly, CDH11-deficient mice had decreased fibrotic endpoints in the bleomycin model of pulmonary fibrosis compared to wild-type mice. Furthermore, anti-CDH11-neutralizing monoclonal antibodies successfully treated established pulmonary fibrosis induced by bleomycin. TGF-β levels were reduced in bronchoalveolar lavage (BAL) fluid, BAL cells, and primary alveolar macrophages from CDH11-deficient mice. Mechanistic studies demonstrated that TGF-β up-regulated CDH11 expression on A549 cells, and inhibition of CDH11 expression using siRNA reduced TGF-β-induced EMT. Together, these results identify CDH11 as a novel therapeutic target for pulmonary fibrosis.  相似文献   

2.
Intercellular adhesion molecule-1 (ICAM-1; CD54) is an adhesion molecule constitutively expressed in abundance on the cell surface of type I alveolar epithelial cells (AEC) in the normal lung and is a critical participant in pulmonary innate immunity. At many sites, ICAM-1 is shed from the cell surface as a soluble molecule (sICAM-1). Limited information is available regarding the presence, source, or significance of sICAM-1 in the alveolar lining fluid of normal or injured lungs. We found sICAM-1 in the bronchoalveolar lavage (BAL) fluid of normal mice (386 +/- 50 ng/ml). Additionally, sICAM-1 was spontaneously released by murine AEC in primary culture as type II cells spread and assumed characteristics of type I cells. Shedding of sICAM-1 increased significantly at later points in culture (5-7 days) compared with earlier time points (3-5 days). In contrast, treatment of AEC with inflammatory cytokines had limited effect on sICAM-1 shedding. BAL sICAM-1 was evaluated in in vivo models of acute lung injury. In hyperoxic lung injury, a reversible process with a major component of leak across the alveolar wall, BAL fluid sICAM-1 only increased in parallel with increased alveolar protein. However, in lung injury due to FITC, there were increased levels of sICAM-1 in BAL that were independent of changes in BAL total protein concentration. We speculate that after lung injury, changes in sICAM-1 in BAL fluid are associated with progressive injury and may be a reflection of type I cell differentiation during reepithelialization of the injured lung.  相似文献   

3.
Pirfenidone (5-methyl-1-phenyl-2-(1H)-pyridone) is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and patients with idiopathic pulmonary fibrosis (IPF). Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen and plays an important role in the pathogenesis of IPF. The present study evaluated the in vitro effects of pirfenidone on expression of HSP47 and collagen type I in cultured normal human lung fibroblasts (NHLF). Expression levels of HSP47 and collagen type I in NHLF stimulated by transforming growth factor (TGF)-beta1 were evaluated genetically, immunologically and immunocytochemically. Treatment with TGF-beta1 stimulated both mRNA and protein expressions of both HSP47 and collagen type I in NHLF, and pirfenidone significantly inhibited this TGF-beta1-enhanced expression in a dose-dependent manner. We concluded that the anti-fibrotic effect of pirfenidone may be mediated not only through direct inhibition of collagen type I expression but also at least partly through inhibition of HSP47 expression in lung fibroblasts, with a resultant reduction of collagen synthesis in lung fibrosis.  相似文献   

4.
Airborne trace elements are implicated in the etio-pathogenesis of a large number of pulmonary diseases. The aim of this study was to evaluate the reliability and effectiveness of direct determination of Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn concentrations in bronchoalveolar lavage (BAL) samples from patients with sarcoidosis, idiopathic pulmonary fibrosis, and Langerhans cell histiocytosis and healthy (smoking and non-smoking) controls. A total of 44 individuals were recruited among sarcoidosis, idiopathic pulmonary fibrosis, and Langerhans cell histiocytosis patients and healthy (smoking and non-smoking) controls. Average Mn concentrations in BAL from patients were 45% lower than in controls (p < 0.01) and remarkable decreases in average concentrations of Cr, Ni and Zn were also found in BAL from patients with idiopathic pulmonary fibrosis and Langerhans cell histiocytosis. As these diseases are characterized by the enhanced activation of certain immunomodulatory cells and by generation of free radicals, the depressed Mn, Zn, Cr and Ni concentrations in BAL from patients may be due to oxidative stress. These preliminary results indicate that assessment of the elemental composition of BAL is a promising approach to study the pathogenesis of diffuse lung diseases and Langerhans cell histiocytosis.  相似文献   

5.
6.
Oxygen-derived free radicals produced by phagocytes have been postulated to contribute to lung tissue damage occurring during diffuse lung diseases (DLD). The two-dimensional electrophoretic (2-DE) analysis of bronchoalveolar lavage (BAL) protein composition revealed different protein profiles in sarcoidosis (S), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) with a significant increase of low molecular weight proteins in IPF. Some of these proteins are involved in antioxidant processes. The aims of this report were to analyse the oxidative stress occurring in patients with DLD through determination of BAL protein carbonyl content and to identify target proteins of oxidation by a proteomic approach (2-DE combined with immunoblotting with specific antibodies for carbonyl groups). Carbonylated proteins detected by enzyme-linked immunosorbent assay (ELISA) were increased in BAL of patients with S, IPF and SSc compared to healthy controls with a significant difference for S and IPF. The proteomic approach to the analysis of BAL revealed that protein carbonylation was a process involving specific carbonylation-sensitive proteins and that in IPF a greater number of proteins target of oxidation were present. In conclusion, to our knowledge, this is the first report providing a database of proteins target of oxidation in BAL of patients with sarcoidosis, idiopathic pulmonary fibrosis and systemic sclerosis.  相似文献   

7.
BACKGROUND: Based on assessment of mRNA expression, the lung is a major site of expression of the vascular endothelial growth factor (VEGF) gene, largely from type II alveolar epithelial cells. With the knowledge that VEGF can function to induce vascular leak, we hypothesized that to protect the lung from pulmonary edema, the VEGF produced in the lung must be compartmentalized from the pulmonary endothelium, and thus must be compartmentalized to the surface of the respiratory epithelium. MATERIAL AND METHODS: To assess this hypothesis, we quantified the levels of VEGF in human respiratory epithelial lining fluid recovered by bronchoalveolar lavage from normal individuals. RESULTS: Strikingly, human respiratory epithelial lining fluid contains 11 +/- 5 ng/mL as quantified by ELISA, a 500-fold greater concentration than plasma (22 +/- 10 pg/mL, p < 0.0005). Western analysis of BAL fluid proteins showed the major VEGF isoform in respiratory epithelial lining fluid is VEGF165. CONCLUSIONS: With the knowledge that proteins of molecular mass like VEGF (34 to 46 kDa) slowly diffuse across the alveolar epithelium, it is likely that this high level "reservoir" of VEGF protein on the respiratory epithelial surface plays a role in normal lung endothelial biology. However, this compartmentalized VEGF reservoir may also be a "Damocles sword" poised to induce lung endothelial permeability in conditions of acute lung injury when the integrity of the alveolar epithelial barrier is breached.  相似文献   

8.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients.

Methods

We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization.

Results

BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients.

Conclusion

We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.  相似文献   

9.
epithelial–mesenchymal transition (EMT) has been considered to be involved in organ fibrogenesis. However, there is few direct evidence of this process in the pathophysiology of pulmonary fibrosis in vivo. Therefore, we tried to verify the involvement of this process in the development of pulmonary fibrosis. Since the co-expressions of epithelial and mesenchymal markers are thought to be a marker of EMT, we performed dual-immuunohistochemistry to assess the co-expressions of these proteins in lung tissues from bleomycin-induced pulmonary fibrosis in mice, and from patients with idiopathic pulmonary fibrosis, and nonspecific interstitial pneumonia. Double positive cells for epithelial markers including E-cadherin, T1α, or aquaporin 5, and a mesenchymal markers α-smooth muscle actin or vimentin were not found in bleomycin-induced pulmonary fibrosis in mice. Double positive cells for E-cadherin, ICAM-1, LEA, CD44v9, or SP-A and α-smooth muscle actin or vimentin were not found in lung tissues from normal lung parenchyma, idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia. These results offer at least two possibilities. One is that EMT does not occur in IPF or bleomycin-induced pulmonary fibrosis in mice. Another is that EMT may occur in pulmonary fibrosis but the time during this transition in which cells express detectable levels of epithelial and mesenchymal markers is too small to be detected by double immunohistochemistry.  相似文献   

10.
Lipocortin I-S100 (calcyclin) heterotetramer exhibited ATPase activity in the presence of dsDNA but not ssDNA. To demonstrate its helicase activity, an 80-mer polynucleotide complementary to the replication origin of M13mp18 was synthesized, and the oligonucleotide, (dC)(20), was ligated to either its 5'- or 3'- end for binding to lipocortin. Lipocortin I heterotetramer displaced chains of the partially Y-shaped duplexes with a dC-tail at either the 5'- or 3'- end. The chain displacement required ATP and Mg(2+). Nonhydrolyzable ATP analogues were not effective. Lipocortin I heterotetramer also catalyzed annealing of the polynucleotides to M13mp18. Ca(2+) and phospholipids but not ATP and Mg(2+) were essential for this reaction. Since the chain displacing and annealing reactions were inhibited by monospecific anti-lipocortin I or anti-S100 antibodies, the present observations suggest that the lipocortin I heterotetramer regulates unwinding and annealing of DNA by Mg(2+) (plus ATP) and Ca(2+) (and phospholipids), respectively.  相似文献   

11.
The goals of this study were to determine whether the Fas-dependent apoptosis pathway is active in the lungs of patients with the acute respiratory distress syndrome (ARDS), and whether this pathway can contribute to lung epithelial injury. We found that soluble Fas ligand (sFasL) is present in bronchoalveolar lavage (BAL) fluid of patients before and after the onset of ARDS. The BAL concentration of sFasL at the onset of ARDS was significantly higher in patients who died. BAL from patients with ARDS induced apoptosis of distal lung epithelial cells, which express Fas, and this effect was inhibited by blocking the Fas/FasL system using three different strategies: anti-FasL mAb, anti-Fas mAb, and a Fas-Ig fusion protein. In contrast, BAL from patients at risk for ARDS had no effect on distal lung epithelial cell apoptosis. These data indicate that sFasL is released in the airspaces of patients with acute lung injury and suggest that activation of the Fas/FasL system contributes to the severe epithelial damage that occurs in ARDS. These data provide the first evidence that FasL can be released as a biologically active, death-inducing mediator capable of inducing apoptosis of cells of the distal pulmonary epithelium during acute lung injury.  相似文献   

12.

Background

The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined.

Methods

Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR.

Results

The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition.

Conclusions

Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.  相似文献   

13.
TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells   总被引:10,自引:0,他引:10  
Transforming growth factor-beta 1 (TGF-beta 1) has important roles in lung fibrosis and the potential to induce apoptosis in several types of cells. We previously demonstrated that apoptosis of lung epithelial cells induced by Fas ligation may be involved in the development of pulmonary fibrosis. In this study, we show that TGF-beta1 induces apoptosis of primary cultured bronchiolar epithelial cells via caspase-3 activation and down-regulation of cyclin-dependent kinase inhibitor p21. Concentrations of TGF-beta 1 that were not sufficient to induce apoptosis alone could enhance agonistic anti-Fas Ab or rFas ligand-mediated apoptosis of cultured bronchiolar epithelial cells. Soluble Fas ligand in the bronchoalveolar lavage fluid (BALF) from patients with idiopathic pulmonary fibrosis (IPF) also induced apoptosis of cultured bronchiolar epithelial cells that was significantly attenuated by anti-TGF-beta Ab. Otherwise, BALF from patients with hypersensitivity pneumonitis (HP) could not induce apoptosis on bronchiolar epithelial cells, despite its comparable amounts of soluble Fas ligand. The concentrations of TGF-beta 1 in BALF from patients with IPF were significantly higher compared with those in BALF from patients with HP or controls. Furthermore, coincubation with the low concentration of TGF-beta 1 and HP BALF created proapoptotic effects comparable with the IPF BALF. In vivo, the administration of TGF-beta 1 could enhance Fas-mediated epithelial cell apoptosis and lung injury via caspase-3 activation in mice. Our results demonstrate a novel role of TGF-beta 1 in the pathophysiology of pulmonary fibrosis as an enhancer of Fas-mediated apoptosis of lung epithelial cells.  相似文献   

14.
Lipocortin I, a Ca2(+)-and phospholipid-binding protein without EF-hand structures, has many biological effects in vitro. Its actual role in vivo, however is unknown. We obtained and characterized five monoclonal antibodies to lipocortin I. Two of these monoclonal antibodies (L2 and L4-MAbs) reacted with the Ca(+)-bound form of lipocortin I, but not with the Ca2(+)-free form, both in vivo and in vitro. Lipocortin I required greater than or equal to 10 microM-Ca2+ to bind the two antibodies, and this Ca2+ requirement was not affected by phosphatidylserine. L2-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I and inhibited its binding to Escherichia coli membranes and to phosphatidylserine in vitro. L4-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I, but did not affect its binding to E. coli membranes or to phosphatidylserine. These findings indicated that the inhibition of phospholipase A2 by lipocortin I was not simply due to removal or capping of the substrates in E. coli membranes. Furthermore, an immunofluorescence study using L2-MAb showed the actual existence of Ca2(+)-bound form of lipocortin I in vivo.  相似文献   

15.
Lysophosphatidic acid (LPA), a simple bioactive phospholipid, is present in biological fluids such as plasma and bronchoalveolar lavage (BAL). It appears to have both pro- and anti-inflammatory roles in inflammatory lung diseases. Exogenous LPA promotes inflammatory responses by regulating the expression of chemokines, cytokines, and cytokine receptors in lung epithelial cells. In addition to the modulation of inflammatory responses, LPA regulates cytoskeleton rearrangement and confers protection against lung injury by enhancing lung epithelial cell barrier integrity and remodeling. The biological effects of LPA are mediated through its cell surface G-protein coupled LPA1–7 receptors. The roles of LPA receptors in lung fibrosis, asthma, and acute lung injury have been investigated using genetically engineered LPA receptor deficient mice and there appears to be a definitive role for endogenous LPA and its receptors in the pathogenesis of pulmonary inflammatory diseases. This review summarizes recent reports on the role of LPA and its receptors in the regulation of lung epithelial inflammatory responses and remodeling. This article is part of a Special Issue entitled: Advances in Lysophospholipid Research.  相似文献   

16.
Found in inflammatory zone (FIZZ) 2, also known as resistin-like molecule (RELM)-β, belongs to a novel cysteine-rich secreted protein family named FIZZ/RELM. Its function is unclear, but a closely related family member, FIZZ1, has profibrotic activities. The human ortholog of rodent FIZZ1 has not been identified, but human FIZZ2 has significant sequence homology to both rodent FIZZ2 (59%) and FIZZ1 (50%). Given the greater homology to rodent FIZZ2, analyzing the role of FIZZ2 in a rodent model of bleomycin-induced pulmonary fibrosis would be of greater potential relevance to human fibrotic lung disease. The results showed that FIZZ2 was highly induced in lungs of rodents with bleomycin-induced pulmonary fibrosis and of human patients with idiopathic pulmonary fibrosis. FIZZ2 expression was induced in rodent and human lung epithelial cells by Th2 cytokines, which was mediated via STAT6 signaling. The FIZZ2 induction in murine lungs was found to be essential for pulmonary fibrosis, as FIZZ2 deficiency significantly suppressed pulmonary fibrosis and associated enhanced extracellular matrix and cytokine gene expression. In vitro analysis indicated that FIZZ2 could stimulate type I collagen and α-smooth muscle actin expression in lung fibroblasts. Furthermore, FIZZ2 was shown to have chemoattractant activity for bone marrow (BM) cells, especially BM-derived CD11c(+) dendritic cells. Notably, lung recruitment of BM-derived cells was impaired in FIZZ2 knockout mice. These findings suggest that FIZZ2 is a Th2-associated multifunctional mediator with potentially important roles in the pathogenesis of fibrotic lung diseases.  相似文献   

17.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

18.
Expression of annexins as a function of cellular growth state   总被引:8,自引:1,他引:7       下载免费PDF全文
Annexins are a structurally related family of Ca2+ binding proteins of undertermined biological function. Annexin I (also called lipocortin 1) is a substrate for the EGF-stimulated tyrosine kinase and is postulated to be involved in mitogenic signal transduction. To investigate further the involvement of lipocortin 1 in cell proliferation, we measured lipocortin 1 levels in normal diploid human foreskin fibroblasts (HFF) to determine whether its expression changed as a function of growth status. For comparison, the expression of annexin V (also called endonexin II) was measured in HFF cells. Endonexin II is a protein with similar Ca2+ and phospholipid binding properties as lipocortin 1, but it is not a substrate for tyrosine kinases. Quiescent HFF cell cultures were induced to proliferate by either subculture to lower cell density, EGF stimulation, or serum stimulation. In all three protocols, proliferating HFF cells contained three- to fourfold higher levels of lipocortin 1 and three- to fourfold lower levels of endonexin II than quiescent HFF cells. In contrast, the expression of annexin II (also called calpactin I) and annexin IV (also called endonexin I) remained relatively unchanged in growing and quiescent HFF cells. Lipocortin 1 synthesis rate was eightfold higher and its turnover rate was 1.5-fold slower in proliferating compared to quiescent HFF cells. Endonexin II synthesis rate remained constant but its turnover rate was 2.2-fold faster in proliferating compared to quiescent HFF cells. In a separate set of experiments, annexin expression levels were measured in cultures of rat PC-12 cells, a pheochromocytoma that ceases proliferation and undergoes reversible differentiation into nondividing neuronlike cells in response to nerve growth factor (NGF). After NGF treatment, PC-12 cells expressed fivefold higher levels of endonexin II and 32-fold higher levels of calpactin 1. Lipocortin 1 and endonexin I were not expressed in PC-12 cells. In summary, lipocortin 1 expression exhibited a positive correlation with cell proliferation in HFF cells. The increased expression of endonexin II in quiescent HFF cells and differentiating PC-12 cells implies that this protein may play a more prominent role in nondividing cells.  相似文献   

19.
Paraffin sections were obtained of human fetal, adult, and pathological lung (pulmonary fibrosis after radiotherapy or chemotherapy). The localization of epithelial adhesion molecules E-cadherin and Ep-CAM (former epithelial surface 40 kDa glycoprotein) was investigated by immunoperoxidase and/or immunofluorescence techniques with monoclonal antibodies. During development, the epithelia of the primary pulmonary primordium, the secondary bronchi and the adult bronchial epithelium retained immunoreactivity for E-cadherin and Ep-CAM with lateral immunostaining of cell membranes. In normal adult lungs, Ep-CAM was detected in type I and II alveolar epithelial cells, whereas E-cadherin was confined to the basolateral domain of type II cells. In pulmonary fibrosis, Ep-CAM could be further detected on the cell surface of epithelial remnants. In contrast, E-cadherin expression was characterized by a change of the membrane localization to a spotty, cytoplasmic pattern in the alveolar epithelium, possibly indicating functional inactivation of the protein during fibrogenesis.  相似文献   

20.
To investigate factors that determine bronchoalveolar lavage (BAL) cellularity in patients with idiopathic pulmonary fibrosis (IPF), we compared BAL cells in patients with IPF (n = 83) to both nonsmoking (n = 111) and smoking (n = 19) normal volunteers. Patients with IPF had higher concentrations of BAL total cells and alveolar macrophages than nonsmoking volunteers and more BAL neutrophils and eosinophils than normal volunteers regardless of smoking status. Among patients with IPF, the numbers of alveolar macrophages, neutrophils, or eosinophils were strongly associated with either smoking status or pack-years of cigarette smoking. In fact, after accounting for cigarette smoking, using multivariate analysis, the only additional factors that were found to be associated with BAL cellularity were age (macrophages and eosinophils) and the percent predicted forced expired volume in 1 s (neutrophils). Additional multivariate models failed to identify a significant relationship between BAL cellularity and either the type of immunosuppressive therapy or other physiological measures of lung function. We conclude that cigarette smoking strongly influences BAL cellularity in patients with IPF. These findings suggest that cigarette smoking may have a role in the pathogenesis of IPF or may adversely affect the prognosis in patients with IPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号