首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the “mixing vessel” that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1), reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.  相似文献   

2.
Masoodi TA  Shaik NA  Shafi G  Munshi A  Ahamed AK  Masoodi ZA 《Gene》2012,491(2):200-204
To gain insight into the possible origin of the hemagglutinin of 2009 outbreak, we performed its comparative analysis with hemagglutinin of influenza viral strains from 2005 to 2008 and the past pandemics of 1977, 1968, 1957 and 1918. This insilico analysis showed a maximum sequence similarity between 2009 and 1918 pandemics. Primary structure analysis, antigenic and glycosylation site analyses revealed that this protein has evolved from 1918 pandemic. Phylogenetic analysis of HA amino acid sequence of 2009 influenza A(H1N1) viruses indicated that this virus possesses a distinctive evolutionary trait with 1918 influenza A virus. Although the disordered sequences are different among all the isolates, the disordered positions and sequences between 2009 and 1918 isolates show a greater similarity. Thus these analyses contribute to the evidence of the evolution of 2009 pandemic from 1918 influenza pandemic. This is the first computational evolutionary analysis of HA protein of 2009 H1N1 pandemic.  相似文献   

3.
The COVID-19 pandemic goes into its third year and the world population is longing for an end to the pandemic. Computer simulations of the future development of the pandemic have wide error margins and predictions on the evolution of new viral variants of SARS-CoV-2 are uncertain. It is thus tempting to look into the development of historical viral respiratory pandemics for insight into the dynamic of pandemics. The Spanish flu pandemic of 1918 caused by the influenza virus H1N1 can here serve as a potential model case. Epidemiological observations on the shift of influenza mortality from very young and old subjects to high mortality in young adults delimitate the pandemic phase of the Spanish flu from 1918 to 1920. The identification and sequencing of the Spanish flu agent allowed following the H1N1 influenza virus after the acute pandemic phase. During the 1920s H1N1 influenza virus epidemics with substantial mortality were still observed. As late as 1951, H1N1 strains of high virulence evolved but remained geographically limited. Until 1957, the H1N1 virus evolved by accumulation of mutations (‘antigenic drift’) and some intratypic reassortment. H1N1 viruses were then replaced by the pandemic H2N2 influenza virus from 1957, which was in 1968 replaced by the pandemic H3N2 influenza virus; both viruses were descendants from the Spanish flu agent but showed the exchange of entire gene segments (‘antigenic shift’). In 1977, H1N1 reappeared from an unknown source but caused only mild disease. However, H1N1 achieved again circulation in the human population and is now together with the H3N2 influenza virus an agent of seasonal influenza winter epidemics.  相似文献   

4.
Persistent host markers in pandemic and H5N1 influenza viruses   总被引:3,自引:0,他引:3       下载免费PDF全文
Avian influenza viruses have adapted to human hosts, causing pandemics in humans. The key host-specific amino acid mutations required for an avian influenza virus to function in humans are unknown. Through multiple-sequence alignment and statistical testing of each aligned amino acid, we identified markers that discriminate human influenza viruses from avian influenza viruses. We applied strict thresholds to select only markers which are highly preserved in human influenza virus isolates over time. We found that a subset of these persistent host markers exist in all human pandemic influenza virus sequences from 1918, 1957, and 1968, while others are acquired as the virus becomes a seasonal influenza virus. We also show that human H5N1 influenza viruses are significantly more likely to contain the amino acid predominant in human strains for a few persistent host markers than avian H5N1 influenza viruses. This sporadic enrichment of amino acids present in human-hosted viruses may indicate that some H5N1 viruses have made modest adaptations to their new hosts in the recent past. The markers reported here should be useful in monitoring potential pandemic influenza viruses.  相似文献   

5.
There are 15 subtypes of influenza A virus (H1-H15), all of which are found in avian species. Three caused pandemics in the last century: H1 in 1918 (and 1977), H2 in 1957 and H3 in 1968. In 1997, an H5 avian virus and in 1999 an H9 virus caused outbreaks of respiratory disease in Hong Kong. We have determined the three-dimensional structures of the haemagglutinins (HAs) from H5 avian and H9 swine viruses closely related to the viruses isolated from humans in Hong Kong. We have compared them with known structures of the H3 HA from the virus that caused the 1968 H3 pandemic and of the HA--esterase--fusion (HEF) glycoprotein from an influenza C virus. Structure and sequence comparisons suggest that HA subtypes may have originated by diversification of properties that affected the metastability of HAs required for their membrane fusion activities in viral infection.  相似文献   

6.
The 1918-1919 "Spanish" influenza pandemic is estimated to have caused 50 million deaths worldwide. Understanding the origin, virulence, and pathogenic properties of past pandemic influenza viruses, including the 1918 virus, is crucial for current public health preparedness and future pandemic planning. The origin of the 1918 pandemic virus has not been resolved, but its coding sequences are very like those of avian influenza virus. The proteins encoded by the 1918 virus differ from typical low-pathogenicity avian influenza viruses at only a small number of amino acids in each open reading frame. In this study, a series of chimeric 1918 influenza viruses were created in which each of the eight 1918 pandemic virus gene segments was replaced individually with the corresponding gene segment of a prototypical low-pathogenicity avian influenza (LPAI) H1N1 virus in order to investigate functional compatibility of the 1918 virus genome with gene segments from an LPAI virus and to identify gene segments and mutations important for mammalian adaptation. This set of eight "7:1" chimeric viruses was compared to the parental 1918 and LPAI H1N1 viruses in intranasally infected mice. Seven of the 1918 LPAI 7:1 chimeric viruses replicated and caused disease equivalent to the fully reconstructed 1918 virus. Only the chimeric 1918 virus containing the avian influenza PB2 gene segment was attenuated in mice. This attenuation could be corrected by the single E627K amino acid change, further confirming the importance of this change in mammalian adaptation and mouse pathogenicity. While the mechanisms of influenza virus host switch, and particularly mammalian host adaptation are still only partly understood, these data suggest that the 1918 virus, whatever its origin, is very similar to avian influenza virus.  相似文献   

7.
Four influenza pandemics have struck the human population during the last 100 years causing substantial morbidity and mortality. The pandemics were caused by the introduction of a new virus into the human population from an avian or swine host or through the mixing of virus segments from an animal host with a human virus to create a new reassortant subtype virus. Understanding which changes have contributed to the adaptation of the virus to the human host is essential in assessing the pandemic potential of current and future animal viruses. Here, we develop a measure of the level of adaptation of a given virus strain to a particular host. We show that adaptation to the human host has been gradual with a timescale of decades and that none of the virus proteins have yet achieved full adaptation to the selective constraints. When the measure is applied to historical data, our results indicate that the 1918 influenza virus had undergone a period of preadaptation prior to the 1918 pandemic. Yet, ancestral reconstruction of the avian virus that founded the classical swine and 1918 human influenza lineages shows no evidence that this virus was exceptionally preadapted to humans. These results indicate that adaptation to humans occurred following the initial host shift from birds to mammals, including a significant amount prior to 1918. The 2009 pandemic virus seems to have undergone preadaptation to human-like selective constraints during its period of circulation in swine. Ancestral reconstruction along the human virus tree indicates that mutations that have increased the adaptation of the virus have occurred preferentially along the trunk of the tree. The method should be helpful in assessing the potential of current viruses to found future epidemics or pandemics.  相似文献   

8.
Pandemic influenza has posed an increasing threat to public health worldwide in the last decade. In the 20th century, three human pandemic influenza outbreaks occurred in 1918, 1957 and 1968, causing significant mortality. A number of hypotheses have been proposed for the emergence and development of pandemic viruses, including direct introduction into humans from an avian origin and reassortment between avian and previously circulating human viruses, either directly in humans or via an intermediate mammalian host. However, the evolutionary history of the pandemic viruses has been controversial, largely due to the lack of background genetic information and rigorous phylogenetic analyses. The pandemic that emerged in early April 2009 in North America provides a unique opportunity to investigate its emergence and development both in human and animal aspects. Recent genetic analyses of data accumulated through long-term influenza surveillance provided insights into the emergence of this novel pandemic virus. In this review, we summarise the recent literature that describes the evolutionary pathway of the pandemic viruses. We also discuss the implications of these findings on the early detection and control of future pandemics.  相似文献   

9.
The pandemic of 1918 was caused by an H1N1 influenza A virus, which is a negative strand RNA virus; however, little is known about the nature of its direct ancestral strains. Here we applied a broad genetic and phylogenetic analysis of a wide range of influenza virus genes, in particular the PB1 gene, to gain information about the phylogenetic relatedness of the 1918 H1N1 virus. We compared the RNA genome of the 1918 strain to many other influenza strains of different origin by several means, including relative synonymous codon usage (RSCU), effective number of codons (ENC), and phylogenetic relationship. We found that the PB1 gene of the 1918 pandemic virus had ENC values similar to the H1N1 classical swine and human viruses, but different ENC values from avian as well as H2N2 and H3N2 human viruses. Also, according to the RSCU of the PB1 gene, the 1918 virus grouped with all human isolates and "classical" swine H1N1 viruses. The phylogenetic studies of all eight RNA gene segments of influenza A viruses may indicate that the 1918 pandemic strain originated from a H1N1 swine virus, which itself might be derived from a H1N1 avian precursor, which was separated from the bulk of other avian viruses in toto a long time ago. The high stability of the RSCU pattern of the PB1 gene indicated that the integrity of RNA structure is more important for influenza virus evolution than previously thought.  相似文献   

10.
《Seminars in Virology》1994,5(2):103-111
Influenza A viruses continue to emerge from the aquatic avian reservoir and cause pandemics. There are periodic exchanges of influenza virus genes or whole viruses between avians and other species giving rise to pandemics of diseases in humans, lower animals and birds. It is hypothesized that pigs are an intermediate host and that China is an epicenter for the evolution of human pandemic strains. However, the transmission of avian influenza viruses to pigs in Europe in 1979 and detection of reassortants with human influenza genes in pigs raises the question of whether the next pandemic of influenza will emerge in Europe!  相似文献   

11.
Chen LM  Davis CT  Zhou H  Cox NJ  Donis RO 《PLoS pathogens》2008,4(5):e1000072
The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian-human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs.  相似文献   

12.
The Spanish influenza pandemic of 1918-1919 caused acute illness in 25-30% of the world's population and resulted in the death of 40 million people. The complete genomic sequence of the 1918 influenza virus will be deduced using fixed and frozen tissues of 1918 influenza victims. Sequence and phylogenetic analyses of the complete 1918 haemagglutinin (HA) and neuraminidase (NA) genes show them to be the most avian-like of mammalian sequences and support the hypothesis that the pandemic virus contained surface protein-encoding genes derived from an avian influenza strain and that the 1918 virus is very similar to the common ancestor of human and classical swine H1N1 influenza strains. Neither the 1918 HA genes nor the NA genes possessed mutations that are known to increase tissue tropicity, which accounts for the virulence of other influenza strains such as A/WSN/33 or fowl plague viruses. The complete sequence of the nonstructural (NS) gene segment of the 1918 virus was deduced and tested for the hypothesis that the enhanced virulence in 1918 could have been due to type I interferon inhibition by the NS1 protein. The results from these experiments were inconclusive. Sequence analysis of the 1918 pandemic influenza virus is allowing us to test hypotheses as to the origin and virulence of this strain. This information should help to elucidate how pandemic influenza strains emerge and what genetic features contribute to their virulence.  相似文献   

13.
Y Kawaoka  S Krauss    R G Webster 《Journal of virology》1989,63(11):4603-4608
We determined the origin and evolutionary pathways of the PB1 genes of influenza A viruses responsible for the 1957 and 1968 human pandemics and obtained information on the variable or conserved region of the PB1 protein. The evolutionary tree constructed from nucleotide sequences suggested the following: (i) the PB1 gene of the 1957 human pandemic strain, A/Singapore/1/57 (H2N2), was probably introduced from avian species and was maintained in humans until 1968; (ii) in the 1968 pandemic strain, A/NT/60/68 (H3N2), the PB1 gene was not derived from the previously circulating virus in humans but probably from another avian virus; and (iii) a current human H3N2 virus inherited the PB1 gene from an A/NT/60/68-like virus. Nucleotide sequence analysis also showed that the avian PB1 gene was introduced into pigs. Hence, transmission of the PB1 gene from avian to mammalian species is a relatively frequent event. Comparative analysis of deduced amino acid sequences disclosed highly conserved regions in PB1 proteins, which may be key structures required for PB1 activities.  相似文献   

14.
Genetic and biologic observations suggest that pigs may serve as “mixing vessels” for the generation of human-avian influenza A virus reassortants, similar to those responsible for the 1957 and 1968 pandemics. Here we demonstrate a structural basis for this hypothesis. Cell surface receptors for both human and avian influenza viruses were identified in the pig trachea, providing a milieu conducive to viral replication and genetic reassortment. Surprisingly, with continued replication, some avian-like swine viruses acquired the ability to recognize human virus receptors, raising the possibility of their direct transmission to human populations. These findings help to explain the emergence of pandemic influenza viruses and support the need for continued surveillance of swine for viruses carrying avian virus genes.  相似文献   

15.
The coding region of influenza A virus RNA segment 7 from the 1918 pandemic virus, consisting of the open reading frames of the two matrix genes M1 and M2, has been sequenced. While this segment is highly conserved among influenza virus strains, the 1918 sequence does not match any previously sequenced influenza virus strains. The 1918 sequence matches the consensus over the M1 RNA-binding domains and nuclear localization signal and the highly conserved transmembrane domain of M2. Amino acid changes that correlate with high yield and pathogenicity in animal models were not found in the 1918 strain. Phylogenetic analyses suggest that both genes were mammalian adapted and that the 1918 sequence is very similar to the common ancestor of all subsequent human and classical swine matrix segments. The 1918 sequence matches other mammalian strains at 4 amino acids in the extracellular domain of M2 that differ consistently between avian and mammalian strains, suggesting that the matrix segment may have been circulating in human strains for at least several years before 1918.  相似文献   

16.
Evolution and ecology of influenza A viruses.   总被引:148,自引:0,他引:148       下载免费PDF全文
In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii) There is evidence that most new human pandemic strains and variants have originated in southern China. (viii) There is speculation that pigs may serve as the intermediate host in genetic exchange between influenza viruses in avian and humans, but experimental evidence is lacking. (ix) Once the ecological properties of influenza viruses are understood, it may be possible to interdict the introduction of new influenza viruses into humans.  相似文献   

17.
The 1957 and 1968 human pandemic influenza A virus strains as well as duck viruses possess sialidase activity under low-pH conditions, but human H3N2 strains isolated after 1968 do not possess such activity. We investigated the transition of avian (duck)-like low-pH stability of sialidase activities with the evolution of N2 neuraminidase (NA) genes in human influenza A virus strains. We found that the NA genes of H3N2 viruses isolated from 1971 to 1982 had evolved from the side branches of NA genes of H2N2 epidemic strains isolated in 1968 that were characterized by the low-pH-unstable sialidase activities, though the NA genes of the 1968 pandemic strains preserved the low-pH-stable sialidase. These findings suggest that the prototype of the H3N2 epidemic influenza strains isolated after 1968 probably acquired the NA gene from the H2N2 low-pH-unstable sialidase strain by second genetic reassortment in humans.  相似文献   

18.
Interspecies transmission of influenza A viruses circulating in wild aquatic birds occasionally results in influenza outbreaks in mammals, including humans. To identify early changes in the receptor binding properties of the avian virus hemagglutinin (HA) after interspecies transmission and to determine the amino acid substitutions responsible for these alterations, we studied the HAs of the initial isolates from the human pandemics of 1957 (H2N2) and 1968 (H3N2), the European swine epizootic of 1979 (H1N1), and the seal epizootic of 1992 (H3N3), all of which were caused by the introduction of avian virus HAs into these species. The viruses were assayed for their ability to bind the synthetic sialylglycopolymers 3'SL-PAA and 6'SLN-PAA, which contained, respectively, 3'-sialyllactose (the receptor determinant preferentially recognized by avian influenza viruses) and 6'-sialyl(N-acetyllactosamine) (the receptor determinant for human viruses). Avian and seal viruses bound 6'SLN-PAA very weakly, whereas the earliest available human and swine epidemic viruses bound this polymer with a higher affinity. For the H2 and H3 strains, a single mutation, 226Q-->L, increased binding to 6'SLN-PAA, while among H1 swine viruses, the 190E-->D and 225G-->E mutations in the HA appeared important for the increased affinity of the viruses for 6'SLN-PAA. Amino acid substitutions at positions 190 and 225 with respect to the avian virus consensus sequence are also present in H1 human viruses, including those that circulated in 1918, suggesting that substitutions at these positions are important for the generation of H1 human pandemic strains. These results show that the receptor-binding specificity of the HA is altered early after the transmission of an avian virus to humans and pigs and, therefore, may be a prerequisite for the highly effective replication and spread which characterize epidemic strains.  相似文献   

19.
Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 ‘Spanish’ influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882–1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913–1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918.  相似文献   

20.
Rabadan R  Levine AJ  Robins H 《Journal of virology》2006,80(23):11887-11891
In the last few years, the genomic sequence data for thousands of influenza A virus strains, including the 1918 pandemic strain, and hundreds of isolates of the avian influenza virus H5N1, which is causing an increasing number of human fatalities, have become publicly available. This large quantity of sequence data allows us to do comparative genomics with the human and avian versions of the virus. We find that the nucleotide compositions of influenza A viruses infecting the two hosts are sufficiently different that we can determine the host at almost 100% accuracy. This assignment works at the segment level, which allows us to construct the reassortment history of individual segments within each strain. We suggest that the different nucleotide compositions can be explained by a host-dependent mutation bias. To support this idea, we estimate the fixation rates for the different polymerase segments and the ratios of synonymous to nonsynonymous changes. Additionally, we provide evidence supporting the hypothesis that the H1N1 influenza virus entered the human population just prior to the 1918 outbreak, with an earliest bound of 1910.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号