共查询到20条相似文献,搜索用时 15 毫秒
1.
Sickle hemoglobin differs from normal adult hemoglobin by its ability to polymerize, which occurs at relatively high concentrations since the solubility for polymerization is typically above 160 mg/ml. We have recently found that the gel formed by polymers is metastable if the gel is not centrifuged or aged for long times in that polymerization ceases before the monomer concentration has decreased from its original value to the solubility. We have proposed that this effect is due to the obstruction of ends by other polymers in the crowded gel. Here we use Ogston's theory describing spaces amid arrays of random rods to provide a framework for describing the failure of the polymers to propagate. We find good agreement between fiber diameter and minimum void spaces. This novel application of a well-established theoretical framework for crowding may apply to other dense gels as well. 相似文献
2.
Robin W. Briehl 《Journal of molecular biology》1978,123(4):521-538
Two assays of equilibrium properties in the gelation of deoxyhemoglobin S were carried out by analytical ultracentrifugation on the same sample: Csat, the monomer concentration in equilibrium with the fully formed gel, was obtained as the supernatant concentration after sedimentation of a preformed gel. The presence of a plateau region during sedimentation of the supernatant and the rate of sedimentation of the boundary from which Csat was measured indicate that centrifugation did not alter the pre-existing equilibrium and that the supernatant consisted of monomers. The centrifugation was then continued to equilibrium to obtain a distribution showing a sharp increase in molecular weight at Cagg, the monomer concentration at which a small amount of polymerization to large aggregates begins.The primary result is that Csat > Cagg under all conditions. The different values of the two parameters indicate that they reflect two separate transitions and that the overall monomer to gel process has a limited co-operativity. Within the limits of the method Csat is independent of total hemoglobin concentration. The two transitions divide the overall range of total hemoglobin concentration into an essentially monomeric region at concentrations below Cagg, a region in which isotropically oriented polymers exist, occurring when monomer concentration lies between Cagg and Csat, and a two-phase region of conjugate isotropic and anisotropic phases when monomer concentration equals Csat. These regions correspond to zones in the ultracentrifuge equilibrium distribution. In this scheme Cagg depends only on the interaction energy of polymerization. Csat depends on entropic factors which induce tactoid formation as well. Csat, while a monomer concentration, reflects a saturation not of monomers in relation to a polymeric phase, but of polymers in the isotropic phase in relation to the anisotropic or tactoidal polymerized phase. As such, Csat represents a supersaturated state of isolated monomers.The ratio in stripped hemoglobin3 and equilibrium distributions in the zone of isotropically oriented polymers were both used to obtain an order of magnitude estimate of polymer size, found to be much smaller than that of hemoglobin S fibers. This further confirms that gelation does not consist of a single transition and phase change with near infinite co-operativity of polymerization.Csat as well as Cagg are lowered by 2,3,diphosphoglycerate and inositol hexa-phosphate. Decreasing pH near 7 also favors gelation; in stripped hemoglobin a pH optimum for gelation occurs near pH 6.8. The apparent van't Hoff ΔH for stripped hemoglobin is about 3 kcal/mol for Csat and 2 kcal/mol for Cagg. 相似文献
3.
Contrary to the accurate, hard-sphere depiction of monomeric hemoglobin in solution, sickle cell hemoglobin (HbS) polymerization/gelation requires attention to molecular interactions. From the temperature dependence of the osmotic compressibility of HbS gels, we were able to extract the entropy increase for concentrating HbS in this phase. Normalized per mole of water removed, the entropy increase from gel compression DeltaS(gel) is four times the previously measured DeltaS(trans), for the transition from monomeric HbS solution to HbS gel. The positive entropy change cannot emerge from the assembly of hard spheres but can indicate remodeling of HbS fibers driven by release of ordered water. The fourfold difference in DeltaS(gel) and DeltaS(trans) suggests that the act of initial fiber/gel formation from monomeric solution differs from the process of further polymerization due to tighter packing within the gel phase. 相似文献
4.
5.
6.
E J Delaney S E Massil G Y Shi I M Klotz 《Archives of biochemistry and biophysics》1984,228(2):627-638
Studies of modification of hemoglobin and of sickle hemoglobin by alternative aspirins have been extended to a series of new bis esters with a variety of substituted bridging diacids and to a group of mono esters with polar acyl groups. Rates of hydrolysis of these alternative aspirins have also been examined, and they reveal that a careful balance between stability and reactivity is essential for optimal activity. Four-carbon bridging groups have been found to be particularly effective, two of these raising the minimum gelling concentration of sickle hemoglobin by as much as 100%. 相似文献
7.
The dielectric constants of sickle cell hemoglobin were determined before and after gelation. The dielectric properties of oxy and deoxy sickle cell hemoglobin in solution are nearly identical to those of oxy and deoxy hemoglobin A. Only in the gel state did deoxy sickle cell hemoglobin display dielectric behavior different from that in solution. Upon gelation of deoxy sickle cell hemoglobin, the dielectric constant showed a marked decrease, and the relaxation frequency shifted towards higher frequencies. This result suggests that dielectric constant measurement can be used for the investigation of the kinetics of polymerization of sickle cell hemoglobin molecules. Despite the marked decrease in the dielectric constant, deoxy sickle cell hemoglobin still showed a well-defined dielectric dispersion even in the gel state. This indicates that individual molecules have considerable freedom of rotation in gels. It was observed that the dielectric properties of gelled deoxy sickle cell hemoglobin were affected by electrical fields at the level of 10 to 20 V/cm. This observation suggests that electrical fields of moderate strengths are able to perturb the gel structure if the system is near the transition region. The non-linear electrical behavior of gelled sickle cell hemoglobin will be discussed further in subsequent papers. 相似文献
8.
T Asakura K Adachi M Sono S Friedman E Schwartz 《Biochemical and biophysical research communications》1974,57(3):780-786
In order to study the mechanism of the ease of precipitation of oxyhemoglobin S by mechanical shaking, the rates of precipitation of α- and β-subunits of oxyhemoglobin A and oxyhemoglobin S were compared. At pH 8.0, the αA-subunits precipitated rapidly, while the βA-subunits were very stable, although a part of βA-bunits converted to the hemichrome form. At pH 6.0, the βA-subunits precipitated rapidly while the αA-subunits were stable. Similar studies with βS-subunits showed that βS-subunits precipitated rapidly both at acidic and alkaline pHs. The abnormal precipitation of tetrameric oxyhemoglobin S during mechanical shaking may be due to this instability of the βS-subunits. 相似文献
9.
10.
11.
12.
Deoxyhemoglobin S fibers associate into bundles, or fascicles, that subsequently crystallize by a process of alignment and fusion. We have used electron microscopy to study the formation of fascicles and the changes in fiber packing that occur during the conversion of fascicles to crystals. The first event in crystallization involves fibers forming fascicles that are initially small and poorly ordered but, with time, become progressively larger and more highly ordered. After six to eight hours, the fibers in a fascicle form a crystalline lattice. The three-dimensional unit cell parameters of this lattice are a = 1300 A, b = 365 A, and c = 210 A (the a axis is parallel to the fiber axis). Fibers have an elliptical cross-section whose major and minor axes are 250 A and 185 A, respectively. When projected on to the unit cell vectors, these dimensions are 210 A and 155 A, so the unit cell dimension of 365 A implies that there are two fibers per unit cell. Theoretically, fibers could pair so that each member of the unit cell is oriented in the same direction (parallel) or opposite directions (antiparallel). Fourier transforms of electron micrographs (or models) cannot distinguish between these alternatives, since the two arrangements produce very similar intensity distributions. The orientation of the fibers was determined from cross-sections of the fascicles in which the fibers are seen end-on. In this view the images of the fibers are rotationally blurred because the fibers twist 30 degrees to 40 degrees about their helical axis through the 300 A to 400 A thick section. We have been able to remove the rotational blur from each of the fibers in the unit cell using the procedures described by Carragher et al. The deblurred images of the two fibers in the unit cell are related by mirror symmetry. This relationship means that the fibers are antiparallel. These observations suggest that crystallization of fibers in fascicles is mediated by assembly of the fibers into antiparallel pairs that contain equal numbers of double strands running in each direction. 相似文献
13.
Aprelev A Weng W Zakharov M Rotter M Yosmanovich D Kwong S Briehl RW Ferrone FA 《Journal of molecular biology》2007,369(5):1170-1174
Sickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin beta chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolysing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37 degrees C, though the particular values depend on the details of the experiment. We propose that polymer growth stops because the growing ends reach the droplet edge, whereas new polymer formation is thwarted by long nucleation times, since the concentration of hemoglobin is lowered by depletion of monomers into the polymers that have formed. This finding suggests a new aspect to the pathophysiology of sickle cell disease; namely, that cells deoxygenated in the microcirculation are not merely undeformable, but will actively wedge themselves tightly against the walls of the microvasculature by a ratchet-like mechanism driven by the supersaturated solution. 相似文献
14.
15.
Thin ribbon-like crystals are intermediates in the formation of large crystals of deoxyhemoglobin S from many individual fibers. The thin crystals show foldedover regions when observed by electron microscopy. Some crystals are sufficiently long to have several folds each separated by a distance of about 4.4 μm, suggesting that the crystals are helical in solution. The thickness of the crystals varies from 500 to 900 Å as shown by heavy-metal shadowing and by measurements of the thickness at the crossover point where an edge-on view of the crystal is obtained. 相似文献
16.
The measurement of polymer growth is an essential element in characterization of assembly. We have developed a precise method of measuring the growth of sickle hemoglobin polymers by observing the time required for polymers to traverse a photolytically produced channel between a region in which polymers are created and a detection region. The presence of the polymer is functionally detected by observing its ability to create new polymers through the well-established process of heterogeneous nucleation. Using this method, we have determined the rate constants for monomer addition to and release from polymer ends, as well as their temperature dependences. At 25°C we find k+ = 84 ± 2 mM−1 s−1 and k− = 790 ± 80 molecules/s from each end. These numbers are in accord with differential interference contrast measurements, and their ratio gives a solubility measured on individual fibers. The single-fiber solubility agrees with that measured in sedimentation experiments. The concentration dependence of the monomer addition rate is consistent with monomer addition, but not oligomer addition, to growing polymers. The concentration dependence suggests the presence of an activation enthalpy barrier, and the rate of monomer addition is not diffusion-limited. Analysis of the temperature dependence of the monomer addition rate reveals an apparent activation energy of 9.1 ± 0.6 kcal/mol. 相似文献
17.
Sickle hemoglobin (HbS) polymerization occurs when the concentration of deoxyHbS exceeds a well-defined solubility. In experiments using sickle hemoglobin droplets suspended in oil, it has been shown that when polymerization ceases the monomer concentration is above equilibrium solubility. We find that the final concentration in uniform bulk solutions (i.e., with negligible boundaries) agrees with the droplet measurements, and both exceed the expected solubility. To measure hemoglobin in uniform solutions, we used modulated excitation of trace amounts of CO in gels of HbS. In this method, a small amount of CO is introduced to a spatially uniform deoxyHb sample, so that less than 2% of the sample is liganded. The liganded fraction is photolyzed repeatedly and the rate of recombination allows the concentration of deoxyHbS in the solution phase to be determined, even if polymers have formed. Both uniform and droplet samples exhibit the same quantitative behavior, exceeding solubility by an amount that depends on the initial concentration of the sample, as well as conditions under which the gel was formed. We hypothesize that the early termination of polymerization is due to the obstruction in polymer growth, which is consistent with the observation that pressing on slides lowers the final monomer concentration, making it closer to solubility. The thermodynamic solubility in free solution is thus achieved only in conditions with low polymer density or under external forces (such as found in sedimentation) that disrupt polymers. Since we find that only about 67% of the expected polymer mass forms, this result will impact any analysis predicated on predicting the polymer fraction in a given experiment. 相似文献
18.
Sickle cell nitrosyl hemoglobin was examined for gelation by an ultracentrifugal method previously described (Briehl &; Ewert, 1973) and by birefringence. In the presence of inositol hexaphosphate gelation which exhibited the endothermic temperature dependence seen in gels of deoxyhemoglobin S was observed by both techniques. In the absence of inositol hexaphosphate no gelation was observed, nor did nitrosyl hemoglobin A exhibit gelation. On the assumption that gelation is dependent on the deoxy or T (low ligand affinity) as opposed to the oxy or R (high ligand affinity) quaternary structure this supports the conclusion that nitrosyl hemoglobin S in inositol hexaphosphate assumes the T structure, in contrast to the other liganded ferrohemoglobin derivatives oxy and carbon monoxide hemoglobin. Assuming further that the quaternary structures and isomerizations are the same in hemoglobins A and S it can also be concluded that nitrosyl hemoglobin A in inositol hexaphosphate assumes the T state. Since no gelation was seen in stripped nitrosyl hemoglobin S, inositol hexaphosphate serves to effect an R to T switch in this derivative. Thus R-T isomerization in nitrosyl hemoglobin occurs without change in ligand binding at the sixth position of the heme group confirming the conclusion of Salhany (1974) and Salhany et al. (1974).Lowering of the pH toward 6 favors gelation of NO hemoglobin S as it does of deoxy and aquomethemoglobin S (Briehl &; Ewert, 1973,1974), consistent with a favoring of the T structure due to strengthening of the interchain salt bridges and the binding of inositol hexaphosphate and/or changes in site-to-site interactions on which gelation depends. 相似文献
19.
P Y Chou 《Biochemical and biophysical research communications》1974,61(1):87-94
A β-sheet conformation is predicted at the N-terminal of β chains in sickle cell hemoglobin (Hb S) as a result of the β6 Glu → Val mutation. Since Glu is the weakest and Val is the strongest β-sheet former in the predictive method of Chou and Fasman [Biochemistry , 211, 222 (1974)], such a substitution greatly increases the β-sheet potential in the β 1–6 region. The similarity in the concentration and temperature dependence of Hb S gelation to β-sheet formation in polyamino acids suggest that a common aggregation mechanism may be involved. Conditions to cause a β → α trans-formation at the β 1–6 region of Hb S is discussed relative to the treatment of sickle cell disease. 相似文献