首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CLERK  G. C. 《Annals of botany》1972,36(4):801-807
Sporangia of Phytophthora palmivora germinated by either forminggerm tubes or producing zoospores. Two distinct modes of germ-tubedevelopment have been described. Sporangia in distilled waterformed zoospores at 10–34°C with an optimum at 22°Cbut germinated by means of germ tubes at 30 and 34°C only.Zoospore formation was inhibited to varying degrees by cocoapod extract, I.0 per cent (w/v) peptone and yeast extract, 100–500µg1-1 thiamine, and by very low concentrations of severalamino acids, carbohydrates, and inorganic salts. Germ-tube formation was encouraged at 22°C by 1'0 per cent(w/v) peptone and yeast extract, by cocoa pod extract and exudate,10mM CaCl2, 1–10 mM MgSO4. 7H2O, 0.5 per cent (w/v) fructose,galactose, glucose, lactose, maltose, and sucrose, by 100 ppmarginine, aspartic acid, glutarnic acid, glycine, leucine, andtryptophane, and by 100–500 µg 1-1 thiamine.  相似文献   

2.
MANU  M.; CLERK  G. C. 《Annals of botany》1981,47(3):329-334
Very few sporangia of Phytophthora palmivora germinated directlyand produced secondary sporangia in distilled water and in solutionsof amino acids and carbohydrates at 30 °C. Although 1.0per cent (w / v) peptone and yeast-extract stimulated a highpercentage of germination by formation of germ tubes, less than1.0 per cent of the germinated sporangia produced secondarysporangia. Secondary sporangium formation was induced by transferringgerminated primary sporangia from a nutrient medium of sufficientlyhigh concentration to either distilled water or dilute solutionsof organic and inorganic compounds immediately after emergenceof the germ tubes. The percentage of germinated sporangia formingsecondary sporangia was influenced by both the nature and concentrationof the medium into which they were transferred. The secondarysporangia were significantly smaller than the primary sporangia. Phytophthora palmivora, germination, sporangium, Theobroma cacao L., cocoa  相似文献   

3.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

4.
Effects of temperature (15°, 20° and 25°C), O2 partialpressure (PO2=0, 1, 2, 4, and 6 kPa), and individual size(12–79 mm shell length; SL) on survivorship of specimensof the non-indigenous, marine, brown mussel, Perna perna, fromTexas were investigated to assess its potential distributionin North America. Its hypoxia tolerance was temperature-dependent,survivorship being significantly extended at lower temperaturesunder all tested lethal PO2. Incipient tolerated PO2 was 4 and6 kPa at 15 and 20°C, respectively, with >50% mortalityoccurring at 25°C at all tested levels of hypoxia. PO2 hadless of an effect on survival of hypoxia than temperature. At25°C, survivorship was not different over a PO2 range of0–2 kPa and increased only at 4 and 6 kPa. Survivorshipwas size-dependent. Median survival times increased with increasingSL in anoxia and PO2=1 kPa, but at 2, 4 and 6 kPa,smaller individuals survived longer than larger individuals.With tolerance levels similar to other estuarine bivalve species,P. perna should withstand hypoxia encountered in estuarine environments.Thus, its restriction to intertidal rocky shores may be dueto other parameters, particularly its relatively low temperaturetolerance. (Received 26 January 2004; accepted 31 March 2005)  相似文献   

5.
Stimulation of the rate of photosynthesis at 2·0 kPaO2 in comparison with 21 kPa O2 and carbohydrate accumulationover 4h were measured during exposure of sunflower (Helianthusannuus L.) and rape (Brassica napus L.), grown at 30 °Cand 13 °C, to temperatures between 7 °C and 35 °C.The effect of reducing source: sink ratio by shading on theresponse of photosynthetic rate to temperature was also determined.Stimulation of photosynthesis by 2·0 kPa O2 in comparisonwith 21 kPa O2 decreased over 4 h at cool temperatures in sunflowerplants grown at 30 °C but not in rape grown at 30 °C.Stimulation did not decrease over 4 h in plants grown at 13CC. Sucrose was the main carbohydrate accumulated over 4 h;its accumulation increased with decreasing temperature. Starchaccumulation either decreased or remained the same with decreasingtemperature. In plants grown at 30 °C more carbohydrateaccumulated between 8 °C and 21 °C in sunflower thanin rape, but more carbohydrate accumulated at 30 °C in rapethan in sunflower. In plants grown at 13 °C much less carbohydrateaccumulated between 13 °C and 23 °C than in plants grownat 30 °C. Photosynthetic rate in plants grown at 30 °Cexposed to between 20 °C and 35 °C over 32 h (14 h light-10h dark-8 h light), declined over 32 h at 20 °C and 25 °Cin sunflower and at 20 °C in rape. This fall over 32 h,especially at 20 °C in sunflower, was significantly reducedby shading the rest of the plant. Shading had little effecton photosynthetic rate above 25 °C. The work confirms thatlow temperature imposes a sink-limitation on photosynthesiswhich occurs at higher temperatures in sunflower than in rape.This limitation may be relieved by decreasing the source:sinkratio. Key words: Sunflower, rape, photosynthesis, carbohydrates, sink demand, temperature  相似文献   

6.
This study investigated how CO2and temperature affect dry weight(d.wt) accumulation, total nonstructural carbohydrate (TNC)concentration, and partitioning of C and N among organs of twoimportant grasses of the shortgrass steppe,Pascopyrum smithiiRydb. (C3) andBouteloua gracilis(H.B.K.) Lag. ex Steud. (C4).Treatment combinations comprised two temperatures (20 and 35°C)at two concentrations of CO2(380 and 750 µmol mol-1),and two additional temperatures of 25 and 30°C at 750 µmolmol-1CO2. Plants were maintained under favourable nutrient andsoil moisture and harvested following 21, 35, and 49d of treatment.CO2-induced growth enhancements were greatest at temperaturesconsidered favourable for growth of these grasses. Comparedto growth at 380 µmol mol-1CO2, final d.wt of CO2-enrichedP.smithiiincreased 84% at 20°C, but only 4% at 35°C. Finald.wt ofB. graciliswas unaffected by CO2at 20°C, but wasenhanced by 28% at 35°C. Root:shoot ratios remained relativelyconstant across CO2levels, but increased inP. smithiiwith reductionin temperature. These partitioning results were adequately explainedby the theory of balanced root and shoot activity. Favourablegrowth temperatures led to CO2-induced accumulations of TNCin leaves of both species, and in stems ofP. smithii, whichgenerally reflected responses of above-ground d.wt partitioningto CO2. However, CO2-induced decreases in plant tissue N concentrationswere more evident forP. smithii. Roots of CO2-enrichedP. smithiihadgreater total N content at 20°C, an allocation of N below-groundthat may be an especially important adaptation for C3plants.Tissue N contents ofB. graciliswere unaffected by CO2. Resultssuggest CO2enrichment may lead to reduced N requirements forgrowth in C3plants and lower shoot N concentration, especiallyat favourable growth temperatures. Acclimation to CO2; blue grama; Bouteloua gracilis ; carbohydrate; climate change; global change; grass; growth; growth temperature optima; nitrogen; N uptake; Pascopyrum smithii; western wheatgrass  相似文献   

7.
Maximum daily consumption was estimated for Mysis relicta fedad libitum rations of Daphnia pulex at 4,10,15 and 18°C.Gut-residence time was also evaluated for M.relicta fed clado-ceranprey at 4, 10 and 157deg;C. Mean daily consumption (g dry weightof Daphnia g–1 dry weight of Mysis day–1) rangedfrom 6% at 4%C to 12% at 10°. At 18°C, Mysis feedingrate declined to 9% day1. Mean, weight-adjusted consumptionrates exhibited a ‘dome-shaped’ response in relationto water temperature. Consumption rate was highest at 10°Cand lowest at 4°C. Estimated Q10 was more sensitive from4 to 10°C (Q10= 3) than from 10 to 15°C (Q10=1.2). Gut-residencetime for Mysis was inversely related to water temperature, implyingthat evacuation rate increases linearly with water temperature.Feeding and gut-evacuation rates become disassociated at watertemperatures >10°C. As water temperature increased above1°C, relative evacuation rate increased, whereas feedingrate declined. It is postulated that at higher water temperatures,disassociated feeding and gut-evacuation rates reduce the scopefor growth of vertically migrating Mysis and impose a physiologicalconstraint that isolates Mysis from warm, epilimnetic waterduring thermal stratification. 1Present address: Center for Aquatic Ecology, Illinois NaturalHistory Survey, Sam Parr Biological Station, 6401 Meacham Road,Kinmundy, IL 62854, USA  相似文献   

8.
Johnson, Stephen M., Rebecca A. Johnson, and Gordon S. Mitchell. Hypoxia, temperature, andpH/CO2 effects on respiratory discharge from a turtle brain stem preparation. J. Appl. Physiol. 84(2): 649-660, 1998.An in vitrobrain stem preparation from adult turtles (Chrysemyspicta) was used to examine the effects of anoxia andincreased temperature and pH/CO2on respiration-related motor output. At pH ~7.45, hypoglossal (XII)nerve roots produced patterns of rhythmic bursts (peaks) of discharge(0.74 ± 0.07 peaks/min, 10.0 ± 0.6 s duration) that werequantitatively similar to literature reports of respiratory activity inconscious, vagotomized turtles. Respiratory discharge was stable for 6 h at 22°C; at 32°C, peak amplitude and frequency progressivelyand reversibly decreased with time. Two hours of hypoxia had no effecton respiratory discharge. Acutely increasing bath temperature from 22 to 32°C decreased episode and peak duration and increased peakfrequency. Changes in pH/CO2increased peak frequency from zero at pH 8.00-8.10 to maxima of0.81 ± 0.01 and 1.44 ± 0.02 peaks/min at 22°C (pH 7.32) and32°C (pH 7.46), respectively;pH/CO2 sensitivity was similar atboth temperatures. We conclude that1) insensitivity to hypoxiaindicates that rhythmic discharge does not reflect gasping behavior,2) increased temperature altersrespiratory discharge, and 3)central pH/CO2 sensitivity isunaffected by temperature in this preparation (i.e.,Q10 ~1.0).

  相似文献   

9.
The emergence of celery (Apium graveolens L. cv. Utah 52–70)seeds was promoted by growth regulators when exposed to hightemperatures during the germination period. The growth regulatorswere applied to dry seeds prior to sowing, by means of the organicsolvent dichloromethane (DCM). A mixture of gibberellins A4and A7 (GA4/7) strongly enhanced emergence at a high day-timetemperature of 35°C alternating with night temperaturesof 20°C and 25°C; however, emergence was very poor whenthe night temperature was raised to 30°C. Under the latterregime, only mixtures of GA4/7 with 6-benzylaminopurine (BA)or with 2-chlorophosphonic acid (ethephon) promoted seed emergence.However, BA and ethephon applied separately or in combinationwere much less effective in enhancing seed emergence withoutthe addition of GA4/7, under all the temperature regimes.  相似文献   

10.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

11.
The response of the rates of extension (LER) of wheat leaves(Triticum aestivum cv. Gamenya) to temperatures maintained fora short period was measured by changing the temperature of theextension zone and recording the changes in leaf length. Therange of temperatures used was from 4-38 °C. The LER ofall leaves responded to increases in temperature as field temperatureswere suboptimal. The data obtained from several series of measurementsover different ranges of temperature were combined to producea general response curve. The minimum temperature for LER wasconsidered to be approximately 0 °C, the optimum was 28.4°C, while the maximum was in excess of 38 °C. The responsivenessof LER to temperature, measured by the Q10, declined exponentiallyfrom >6 at 5 °C to 2 at 20 °C. The Q10 at 15 °Cwas not affected by nitrogen supply.  相似文献   

12.
Several models have been proposed to describe germination rates,but most are limited in statistical analysis and biologicalmeaning of indices. Therefore, a mathematical model is proposedto utilize the logistic function. The function was defined asan overall response including time, temperature, and the interactionbetween time and temperature. Cumulative germination percentagesover time were used to develop the model. Germination tests were conducted on indiangrass (Sorghastrumnutans (L.) Nash) strain ‘IG-2C-F1’, at constanttemperatures of 9, 12, 15, 20, 25, and 30 °C. The functionfitted the observed data over six temperatures at r2 = 0.99.Time to reach 10% of final germination (Gt10) increased from2.5 d at 30 °C to 44.0 d at 9 °C, and Gt50 (time toreach 50% of final germination) increased from 3.6 d at 30 °Cto 53.8 d at 9 °C. True germination rate (% d–1) foreach temperature was maximum at Gt50. A linear model of 1/Gt50versus temperature was used to estimate the base temperatureof 8.3 °C for germination. An Arrhenius plot indicated achange occurred between 20 °C and 25 °C for temperatureresponse of germination. Published data on hypocotyl growthof Cucumis melo L. were recalculated using the model. Absolutegrowth rates showed a temperature response similar to the publishedweighted-mean elongation rates. Base temperature for hypocotylgrowth of C. melo was estimated as 8.8 °C. The proposedmodel proved to be useful in calculating and interpreting germinationand growth kinetics. Key words: Indiangrass, Sorghastrum nutans (L.) Nash, Germination rate, Threshold temperature, Arrhenius plot, Growth rate, Cucumis melo L  相似文献   

13.
Data are given for Kochia indica seeds showing retention ofviability after storage for various periods of time open tothe air under laboratory conditions, open at 30° C., openat 38° C., and sealed over CaCl2 at 30° C. Seeds have been stored without deterioration at 30° C. sealedover CaC12 for over 14 months. Rapid deterioration of seed inopen storage at laboratory temperature and at 30° C. showsthat loss of viability is accelerated by moisture more thanby temperature.  相似文献   

14.
Germination and Storage of Pollen of Phytolacca dodecandra L. (endod)   总被引:1,自引:0,他引:1  
The effect of sucrose, H2BO3, KNO3, Ca(NO2)2.4H2O and MgSO4.7H2O on pollen germination of Phytolacca dodecandra L. (endod)in a liquid medium was investigated. Sucrose and H3BO3 werecritical to pollen germination. A concentration of 10% sucroseand 161.8 µm H2BO3 gave over 70% germination. The germinationof pollen was not enhanced by Ca(NO3)2.4H2O, KNO3 and MgSO4.7H2O.Endod pollen was dehydrated over CaCl2 and stored in gelatincapsules in cryogenic vials at –175 °C, 1±1°C and 24±2 °C. The pollen moisture content atcollection was approx. 7.8% (f. wt basis) and dehydration overCaCl2 reduced it to about 1.4%. Pollen stored at 1±1°C and –175 °C maintained viability for over 6months. Pollen stored at room temperature lost viability within4 weeks of storage. Pollination with cryopreserved pollen resultedin normal fruit set. Phytolacca dodecandra, endod, pollen germination, pollen storage  相似文献   

15.
The activity of cutin-esterase, cutinase, was detected in themycelial homogenate of Botrytis cinerea cultured in a peptone-sucrosemedium at 25°C for 7 days. The crude enzyme solution wasprepared from the homogenate by centrifugation at 106,600xg,treatment with (NH4)2SO4 at 70% saturation, and dialysis against0.01 M phosphate buffer. The optimum pH, temperature and assayduration for enzyme activity were 5.0, 25°C and 18 hr, respectively.Specific activity was 255 mµmoles/mg protein/18 hr aspalmitate under optimum conditions. 83% of the activity waslost by heating the enzyme solution (pH 7.6) for 4 min at 95°C.Palmitic, stearic, oleic, 9, 10-dihydroxystearic or linoleic,dihydroxyeicosanoic and octadecanedioic acids were recognizedin the enzymic hydrolysate of tomato-cutin using gas-liquidchromatography. Among these fatty acids, palmitic, oleic andoctadecanedioic acids were readily liberated by the enzyme,but dihydroxyeicosanoic acid, the major component of tomato-cutin,was isolated only in small amounts. The enzyme is, therefore,an exo-type cutinase which hydrolyses minor side chains of fattyacids bound to the major structure of cutin. Cutinesterase mayfacilitate cuticular invasion by fungi as a result of reductionin mechanical strength of the cuticle by the enzyme 1Biological Laboratory, Research Department, Nihon Noyaku Co.,Ltd., Kawachinagano, Osaka, Japan (Received June 16, 1970; )  相似文献   

16.
Ribulose bisphosphate carboxylase (E.C.4.1.1.39) was purifiedfrom leaves of Triticum aestivum, Hordeum vulgare, Spinaceaoleracea, Petroselinum crispum, salad mustard-most likely Brassicanapus, Helianthus annuus, Solanum tuberosum, Beta vulgaris,Lolium perenne, Equisetum arvense, Zea mays, Ginkgo biloba,Pteris aquilina, Salix babylonica, Chamaecyparis lawsonianaand Atrichum undulatum by density gradient centrifugation andgel filtration or by ammonium sulphate fractionation, densitygradient centrifugation, ion-exchange chromatography and gelfiltration. Purified enzymes were freeze-dried and then storedat 0 °C to 4 °C. Portions of each enzyme preparationwere reactivated at 25 °C for 5 h in the presence of 10mM HCO2 and 20 mM MgCl2-RuBP carboxylase activities were measuredat four different concentrations of CO2 at 25 °C and pH8.2 in solutions equilibrated with pure nitrogen or air (21%O2, 79% N2). Km(CO2), Vmax and K1(O2) values were computed fromthe results. Significant differences were found in the Km(CO2)values for enzymes isolated from different species. Sensitivityof the enzymes to oxygen was less variable.  相似文献   

17.
Effects of temperature on partition of assimilate between leaves,stems and panicles of pearl millet are analysed in terms ofa duration (tw) over which a structure increased in weight,and a partition factor (p)—the fraction of new dry matterallocated to the structure during tw. The value of tw was, forall structures, inversely proportional to temperature abovea base of 10 °C and below an optimum of 28 to 30 °C.For stems and panicles, the value of p was, with one exception,little affected by temperature. The dry weight of these structureswas, therefore, proportional to tw, and decreased with risein temperature. (The exception was panicles at the lowest temperature,19 °C, for which p was reduced by 40% because few grainswere set.) For leaves, however, p increased with rise in temperature,counteracting the effect on tw, such that dry weight changedlittle with temperature. The optimum temperature for reproductiveyield was 22 °C, but the proportion of the total dry matterallocated to reproductive structures changed little between22 °C and 31 °C. Key words: Pearl millet, temperature, thermal time, partitioning  相似文献   

18.
Growth (assessed from intermolt period and molt increment) andmetabolism (oxygen consumption) of the post-larva of Euphausiapacifica from the southern Japan Sea were determined at sevengraded temperatures ranging from 1 to 25°C. The intermoltperiod shortened progressively as temperature increased from1 to 20°C, but an effect of temperature on molt-to-moltgrowth increment was not seen. Oxygen consumption rates wereaccelerated by the increase in temperature up to 20°C. Beyond20°C, E.pacifica exhibited reduced oxygen consumption anddied within 1 day without molting. After removing the effectof body size, the relationships between growth rate and temperature,and between oxygen consumption rate and temperature, were established.The carbon budget was calculated as a function of temperature.Because of differential effects of temperature on growth andmetabolism, the net growth efficiency [K2 growthx100/(growth+metabolism)]changed with temperature. The optimum temperature at which E.pacificaattained the maximum K2 was 11.4°C, which was derived fromcalculation of cumulative carbon invested in growth and metabolismin this animal. In an alternative method, the optimum temperaturewas obtained mathematically by solving a set of differentialequations. The biological and ecological significance of theoptimum temperature which leads to the maximum K2 is discussed.  相似文献   

19.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

20.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号