首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Calf liver nuclear phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) has been purified approx. 850-fold. The enzyme has a mol. wt. of 34 000 as determined by SDS-polyacrylamide gel electrophoresis. The purified enzyme has a pH optimum between 7.0 and 7.5 with phosphophosphorylase, phosphohistones f1 and f2b, and phosphoprotamine as substrates. The enzyme activity towards these substrates follows the order, phosphophosphorylase greater than phosphohistone f1 greater than phosphohistone f2b greater than phosphoprotamine. The Km values toward phosphophospharylase and phosphohistone f1 are 17 and 28 micron phosphate, respectively. Dephosphorylated histone f1 and orthophosphate are competitive inhibitors of the enzyme with respective Ki values of 11 micron and 4.1 mM. NaCl and divalent metal ions inhibit the enzyme but CaCl2 is slightly stimulatory. It appears that metal ion inhibition occurs at two sites, one on the enzyme and the other on the substrate. The enzyme is also inhibited by NaF and EDTA. Nucleotides bearing the pyrophosphate structure are potent inhibitors of the enzyme while mononucleotides are slightly inhibitory. DNA and other polyions also inhibit the enzyme. The enzyme appears to require free sulfhydryl groups for activity since it is inhibited by N-ethylmaleimide and p-hydroxymercuribenzoate; the latter inhibition can be reversed by mercaptoethanol and dithiothreitol.  相似文献   

2.
ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.  相似文献   

3.
Crystalline L-histidine ammonia-lyase of Achromobacter liquidum was prepared with a 24% recovery of the activity. The specific activity of the pure enzyme (63 mumol of urocanic acid min-1 mg-1) is similar to those so far reported for the enzyme from other sources. The purified enzyme appeared to be homogeneous by analytical disc electrophoresis and isoelectric focusing (pI = 4.95). The molecular weight determined by Sephadex G-200 gel filtration is 200000. The optimum pH is 8.2, and the optimum temperature is 50 degrees C. The enzyme showed strict specificity to L-histidine (Km = 3.6 mM). Several histidine derivatives are not susceptible to the enzyme but do inhibit the enzyme activity competitively; the most effective inhibitors are L-histidine methyl ester (Ki = 3.66 mM) and beta-imidazole lactic acid (Ki = 3.84 mM). L-Histidine hydrazide (Ki = 36 mM) and imidazole (Ki = 6 mM) noncompetitively inhibited the enzyme EDTA markedly inhibited enzyme activity and this inhibition were reversed by divalent metal ions such as Mn2+, Co2+ Zn2+, Ni2+, Mg2+, and Ca2+. These results suggest that the presence of divalent metal ions is necessary for the catalytic activity of histidine ammonia-lyase. Sodium borohydride and hydrogen peroxide inhibited the enzyme activity.  相似文献   

4.
The activity of two purified homogeneous phosphoprotein phosphatases types P I and P II) (phosphoprotein phosphohydrolase, EC 3.1.3.16) from rabbit liver (Khandelwal, R.L., Vandenheede, J.R., and Krebs, E.G. (1976) J. Biol. Chem. 251, 4850-4858) were examined in the presence of divalent cations, Pi, PPi, nucleotides, glycolytic intermediates and a number of other compounds using phosphorylase a, glycogen synthase D and phosphorylated histone as substrates. Enzyme activities were usually inhibited by divalent cations with all substrates; the inhibition being more pronounced with phosphorylase a. Zn2+ was the most potent inhibitor among the divalent cations tested. The enzyme was competitively inhibited by PPi (Ki = 0.1 mM for P I and 0.3 mM for PII), Pi (Ki = 15 mM for P I and 19.8 mM for P II) and p-nitrophenyl phosphate (Ki = 1 mM and 1.4 mM for P I and P II, respectively) employing phosphorylase a as the substrate. The compounds along with a number of others (Na2SO4, citrate, NaF and EDTA) also inhibited the enzyme activity with the other two substrates. Severe inhibition of the enzyme was also observed in the presence of the adenine and uridine nucleotides; monophosphate nucleotides being more inhibitory with phosphorylase a, whereas the di- and triphosphate nucleotides showed more inhibition with glycogen synthase D and phosphorylated histone. Cyclic AMP had no significant effect on enzyme activity with all the substrates tested. Phosphorylated metabolites did not show any marked effect on the enzyme activity with phosphorylase a as the substrate.  相似文献   

5.
The effect of several metals and reagents on the decarboxylation rate of uroporphyrinogen I by using a 16-fold purified preparation of Uroporphyrinogen Decarboxylase from Rhodopseudomonas palustris, was studied. 1 mM Hg2+ and Cu2+ were strong inhibitors, 1 mM Zn2+ and Fe2+ under certain conditions and 1 mM Fe3+ and Cr3+ also inactivated the enzyme, but Pb2+, Cd2+ and Al3+ did not. Metals inhibition was reversed by 1 mM GSH or CySH. 0.1 mM DTNB and PCMB, 1 mM pyridoxal phosphate and 100 mM chloral hydrate, as well as 1 mM 2-methoxy-5-nitrotropone and 0.2 mM diethylpyrocarbonate inhibited Uroporphyrinogen Decarboxylase; while GSH, CySH, N-ethylmaleimide, sodium thioglycolate, 1,4-dithioerythritol, EDTA and O-phenantroline did not modify activity. Data obtained would indicate that one cysteine, one or two histidine residues and probably a lysine group are required for enzyme activity.  相似文献   

6.
A series of polyprenols, ranging in length from 15 to 22 isoprene units, has been isolated from soya beans (Glycine max) and purified by high-pressure liquid chromatography. N.m.r., i.r. and mass spectra of the compounds indicated that they are alpha-saturated polyprenols of the dolichol type. The amount present in dry seeds was about 9 mg/100 g, whereas dolichyl phosphate (Dol-P) was present only in trace amounts. Dol-P phosphatase activity was detected in the microsomal fraction of 5-day-old germinating soya-bean cotyledons. The Dol-P phosphatase activity was linear with respect to time and protein concentration and exhibited a broad pH optimum (pH 7-9). Triton X-100 was necessary for significant enzyme activity. Enzyme activity was slightly enhanced by EDTA, whereas dithiothreitol was without effect. An apparent Km of 5 microM was determined for Dol-P. Bivalent metal ions were not required for enzyme activity. A number of phosphorylated compounds tested as enzyme substrates (including a number of nucleoside phosphates, glucose 6-phosphate, sodium beta-glycerophosphate and Na4P2O7) did not compete with [1-3H]Dol-P as substrate. A number of phospholipids were also tested for their ability to act as Dol-P phosphatase substrates. At 1 mM concentration, phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and lysophosphatidic acid each inhibited enzymic activity. However, at 0.1 mM concentration, phosphatidylcholine and phosphatidylethanolamine were slightly stimulatory, whereas phosphatidic acid and lysophosphatidic acid were still inhibitory. Phosphatidic acid showed competitive inhibition.  相似文献   

7.
Ascorbate-Fe3+-induced and NADPH-induced lipid peroxidation of rat liver microsomes were inhibited by glutathione (GSH). This inhibition was due to microsomal GSH-dependent factor. This factor was heat labile, and storage of microsomes at 4 degrees C for 1 week diminished the activity. GSH could not be substituted by other sulfhydryl compounds tested. Deoxycholate (1 mM) and bromosulfophthalein (0.1 mM) inhibited GSH-dependent protection but did not inhibit microsomal GSH peroxidase activity. Iodoacetate (10 mM) inhibited GSH-dependent protection but did not inhibit microsomal GSH S-transferase. N-Ethylmaleimide (0.1 mM) and oxidized glutathione (10 mM) inhibited GSH-dependent protection but activated microsomal GSH S-transferase activity. These results indicate the existence of a heat-labile, microsomal GSH-dependent protective factor against lipid peroxidation that acts through a factor other than GSH-peroxidase and GSH S-transferase.  相似文献   

8.
The mineralization rate of LC-[1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] (DDT) was reduced by 90% on the 18th day in fungal cultures of Phanerochaete chrysosporium in the presence of 8 mM ethylenediamine tetraacetic acid (EDTA). In the presence of 8 mM N-N-N'-N'-tetramethylenediamine (TEMED), the mineralization rate of 14C-DDT was reduced by 80%. In the presence of 2 mM or 10 mM EDTA, 95% inhibition of lignin peroxidase (LiP) mediated veratryl alcohol oxidase activity and 97% inhibition of LiP mediated iodide oxidase activity occurred. TEMED caused 79% inhibition of veratryl alcohol oxidase activity and 92% inhibition of iodide oxidase activity when the amount used was 2 mM and 10 mM, respectively. In the presence of Zn(II) with slight molar excess of the EDTA concentration, reversed the EDTA mediated non-competitive inhibition of LiP catalyzed veratryl alcohol or iodide oxidation, Zn(II) also reversed the inhibition of LiP catalyzed veratryl alcohol oxidase activity caused by chelators other than EDTA and TEMED. In addition to Zn(II), several other metal ions also relieved EDTA mediated inhibition of veratryl alcohol and iodide oxidase activity catalyzed by LiP. The ability of veratryl alcohol to inhibit iodide oxidation catalyzed by LiP showed that veratryl alcohol could inhibit LiP mediated iodide oxidase activity. Increasing the concentration of iodide was also shown to inhibit veratryl alcohol oxidation. Kinetic analysis showed that the reaction was competitive inhibition.  相似文献   

9.
A calcium-dependent cyclic nucleotide phosphodiesterase from rat cerebrum was, in the absence of activator protein, inhibited by various monovalent cations. The inhibition was rapid, readily reversible, and concentration-dependent, with 100 mM cesium, rubidium, or potassium ion inhibiting essentially all basal enzyme activity, while 100 mM sodium or lithium ions produced only moderate inhibition. The potency of the cations in inhibiting the enzyme was Cs greater than or equal to Rb greater than K greater than Na greater than or equal to Li. Potassium ions increased the apparent Km for cyclic GMP and cyclic AMP by 3- and 5-fold, respectively. At 100 mM, the monovalent cations inhibited enzyme activated by the calcium-dependent activator by only 15 to 30%, while at 55 mM no inhibition pertained. Potassium and sodium ions at 55 mM had no effect on the calcium-independent phosphodiesterase from rat cerebrum. The results indicate that at normal intracellular concentrations of potassium ions the activity of the calcium-dependent phosphodiesterase is virtually completely dependent on the presence of calcium plus activator protein.  相似文献   

10.
The effects of Cu2+, Fe2+ and Zn2+ on 15-hydroxy prostaglandin dehydrogenase activity in rabbit kidney cortex were examined. Cu2+ and Zn2+ (0.05-0.5 mM) inhibited the activity of this enzyme in a dose-dependent manner. The concentration required for 50% inhibition was approximately 0.1 mM for Cu2+ and 0.15 mM for Zn2+. The inhibition by both metals was uncompetitive and non-competitive with regard to NAD+ and prostaglandin E2, respectively, indicating that the mechanisms of the inhibition on the enzyme of both metals may be the same. Fe2+ had no effect on the activity of this enzyme. These results suggest that Cu2+ and Zn2+ have the potential to modulate the catabolism of prostaglandins by the kidney cortex.  相似文献   

11.
Effects of some cysteine analogs and other compounds on in vitro cysteine oxidase were studied in rat brain microsomes. Among the tested compounds, maximum inhibition of microsomal cysteine oxidase was by alpha,alpha'-dipyridyl and the least inhibition by dithiothreitol. Kinetic and dialysis studies found L-homocysteine to be a competitive and reversible inhibitor of cysteine oxidase. Epinephrine was shown to inhibit cysteine oxidase, whereas pyridoxal HCl activated cysteine oxidase at the same concentration. Except for the Mg2+ ion, other metallic ions inhibited cysteine oxidase activity in the following order: Zn2+ greater than Cu2+ greater than Li+ greater than Ca2+ greater than Co2+ greater than K+ greater than Mn2+. A 12 mM concentration of Mg2+ ion was required to obtain maximum cysteine oxidase activity.  相似文献   

12.
Summary Partially purified fructose diphosphatase from the obligate chemolithotroph,Thiobacillus neapolitanus has been characterized, and some of its regulatory properties described. The enzyme had a high effinity for its substrate, but was inhibited by substrate at concentrations above 1 mM. The enzyme had an absolute requirement for a divalent cation. In the absence of EDTA there was a single pH optimum in the alkaline range between 8.5 and 9.5; in the presence of EDTA there was considerable was activity at both neutral and alkaline pH. This diphosphatase was inhibited by AMP at 10–4 M or greater-, the lower the pH, the greater the AMP inhibition. Treatment of the enzyme with 5×10–5 Mpara hydroxy mercuribenzoate allowed retention of full catalytic activity while abolishing considerable AMP inhibition. Exposure of the enzyme to several concentrations of urea had no effect on the AMP inhibition. Homocystine (0.06 mM) and coenzyme A (0.1 mM) had no effect. At 1 mM, PEP caused 60% inhibition, 2, 3-diphosphoglyceric acid produced 26% inhibition, and pyruvate had no effect.  相似文献   

13.
Treatment of alligator serum with different concentrations of EDTA resulted in a concentration-dependent inhibition of serum-mediated sheep red blood cell (SRBC) hemolysis. This inhibition of serum-dependent hemolysis was observed for other chelators of divalent metal ions, such as phosphate and citrate. Treatment of alligator serum with 5 mM EDTA completely inhibited SRBC hemolysis, which could be totally restored by the addition of 5 mM Ca(2+) or Mg(2+), but not Cu(2+) or Ba(2+). These data indicate a specific need for Ca(2+) and/or Mg(2+) in the serum-mediated hemolysis of SRBCs. Kinetic analyses revealed that the addition of 30 mM EDTA 1 min after incubation of SRBCs with serum resulted in only 30% inhibition of hemolytic activity. However, addition of EDTA as early as 3 min post-incubation resulted in complete SRBC hemolysis. Pretreatment of serum with EDTA inhibited the hemolytic activity, but the activity could be restored in a time-dependent manner by the addition of Ca(2+)or Mg(2+). These data indicate that, as in human serum, the need for divalent metal ions occurs early in the alligator serum complement cascade.  相似文献   

14.
The effect of harmaline, a plant alkaloid has been studied on rat intestinal brush border sucrase activity. Stimulation of sucrase activity by Na+ was found to be pH-dependent. At neutral pH, 20 mM Na+ stimulated sucrase activity by reducing K(m) by 30%, while at acidic pH (5.2), the activity increased 4-fold compared to Na+-free enzyme. At 1.0 mM, harmaline markedly inhibited (67%) the enzyme activity at pH 5.2 in the absence of Na+. However, inhibition was reduced in presence of 20 mM sodium, whereas 4.0 mM harmaline was required to inhibit the enzyme activity by 65%. In the absence of Na+ ions, harmaline inhibition of sucrase activity was of competitive type, but it changed to non-competitive type in presence of 20 mM Na+ at pH 5.2. Sucrase-harmaline interactions as a function of pH, both in presence and absence of Na+ revealed a shift in pH optima of the enzyme towards a higher pH in presence of 4 mM and 1 mM harmaline respectively. The observed inhibition was reversible in nature and was only partially overcome by sodium, lithium, potassium, cesium, rubidium and ammonium ions. These findings suggest that harmaline also inhibits rat brush border sucrase and that the presence of Na+ site is not a pre-requisite for the inhibition.  相似文献   

15.
An endonuclease activity that acts on alkali-labile lesions in x-irradiated PM2 DNA and recognizes apurinic lesions in heat/acid treated DNA has been partially purified from Drosophila melanogaster embryos and its specific activity monitored throughout early development. The enzyme activity also showed a low level of activity on UV-irradiated DNA. The saturation kinetics observed with both x-irradiated and apurinic PM2 DNA substrates were similar. The endonuclease activity exhibited a broad pH optimum between pH 6 and 8.5 and was almost completely inhibited by 100 mM NaCl, 0.1 mM EDTA, 2 mM CaCl12 and 10 mM NEM. The reaction was not completely dependent on the presence of Mg++cation, but optimum activity was obtained at a concentration of 0.1 mM; concentrations greater than 1 mM Mgs++ were inhibitory. The specific activity of the apurinic endonuclease, partially purified from several stages of embryonic and early larval development, remained the same. Unfertilized eggs exhibited a reduced level of this presumptive repair activity.Abbreviations AP endonucleases Apurinic/apyrimidinic endonucleases  相似文献   

16.
The effect of metal ions on the activity of trout kidney and liver PBG-synthase was investigated. Heavy metals inhibited the kidney enzyme in a complex manner. Kinetic analysis of the inhibition of liver activity by Pb2+ (Ki = 1.3 mM) was consistent with non-competitive inhibition, whereas Zn2+ (Ki = 1.3 mM) and Mg2+ (Ki = 3.5 mM) were competitive inhibitors.  相似文献   

17.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) (EC 3.6.1.23) derived from HeLa S3 cells has been purified to near homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of about 16,000 nmol of dUMP hydrolyzed per min/mg of protein. The dUTPase enzyme derived from HeLa S3 cells appears to be composed to two equal molecular mass subunits, each being about 22,500 daltons. Association of these subunits to produce a 45,000-dalton protein is promoted by MgCl2. In the presence of EDTA enzyme activity is abolished and the enzyme dissociates into its monomeric form. MgCl2 will completely reverse the inhibition caused by EDTA and promote subunit association. MnCl2 will also promote association of the dUTPase subunits. However, MnCl2 will not completely reverse inhibition by EDTA. In addition, purified dUTPase, extensively dialyzed to remove contaminating ions, is activated almost 2-fold by the addition of 5 mM MgCl2. In contrast, addition of 5 mM MnCl2 to the dialyzed enzyme preparation will cause more than a 50% decrease in enzyme activity. This data indicates that Mg2+ is the natural prosthetic group for this enzyme. The Km value of dUTP for the purified enzyme is 3 X 10(-6) M in the presence of MgCl2. The turnover number for this enzyme has been calculated to be 550 molecules of dUTP hydrolyzed per min under standard assay conditions. Infection of HeLa S3 cells with herpes simplex type 1 virus induces a distinct species of dUTPase. This new species of dUTPase has an isoelectric point of 8.0, compared to an isoelectric point in the range of 5.7 to 6.5 for the HeLa S3 dUTPase. Molecular weight determinations of this new species of dUTPase indicate that the native enzyme is monomeric with a molecular weight of about 35,000. The virally induced dUTPase is inhibited by EDTA and this inhibition is reversed by MgCl2. Unlike the HeLa S3 dUTPase, the virally induced enzyme does not appear to be composed of subunits.  相似文献   

18.
Various inorganic selenocompounds dose-dependently inhibited the rat brain prostaglandin (PG) D synthase, both in the purified enzyme preparation and in the crude brain supernatant. All of the quadrivalent selenium compounds tested had a very limited range of IC50 values in the purified enzyme (11-12 microM) and in the brain supernatant (9-15 microM). A divalent selenium compound was also inhibitory, but a hexavalent selenium compound was ineffective. In contrast, organic selenocompounds such as selenomethionine and selenourea had no effect on the PGD synthase activity. Furthermore, sodium sulfate and sodium sulfite up to 10 mM did not inhibit the activity. The inhibition by selenium required the preincubation of the metal with sulfhydryl compounds such as dithiothreitol (DTT), indicating that the formation of selenotrisulfide or some other adduct(s) is essential for the inhibition. Furthermore, the inhibition was reversed by an excess amount of dithiothreitol, suggesting that the selenotrisulfide derivative of DTT binds to the SH group of the PGD synthase. The kinetic analysis revealed the inhibition by selenite to be noncompetitive with a Ki value of 10.1 microM. On the other hand, glutathione-dependent PGD synthase from rat spleen was much less inhibited, and PGF synthase and PGD2 11-ketoreductase activities were not inhibited by the selenium compound.  相似文献   

19.
Vanadium ions activate as well as inhibit the activity of the NG108-15 adenylate cyclase in vitro in the absence of any hormone. Below 5mM ion, ortho- and metavanadate activate; the maximal increase in activity is 2-fold. Vanadyl sulfate, at 0.1–0.1mM, activates to a similar magnitude as does vanadate over these concentrations; above 0.1mM, it inhibits. Activation of the enzyme by vanadate is not additive to that induced by PGE1 or NaF. Vanadium ions do not alter the Ka for PGE1-activation, nor the Ki for Dala met amide-inhibition, nor diminish the efficacy of opiate, muscarinic and alpha adrenergic regulation of the enzyme. However, the mechanisms by which NaF and vanadium ions activate must differ. Vanadium, unlike NaF, does not attenuate the ability of hormone receptors to direct inhibition of adenylate cyclase.  相似文献   

20.
Guanosine 5'-triphosphate (GTP) was found to inhibit guinea pig liver transglutaminase activity as measured by [3H]putrescine incorporation into casein. GDP and GTP-gamma-S also inhibited enzyme activity (GTP-gamma-S greater than GTP greater than GDP). Kinetic studies showed that GTP acted as a reversible, noncompetitive inhibitor and that CaCl2 partially reversed GTP inhibition. GTP also inhibited rat liver and adult bovine aortic endothelial cell transglutaminase, but did not inhibit Factor XIIIa activity. Guanosine monophosphate (GMP), cyclic GMP, and polyguanylic acid did not inhibit enzyme activity. Guinea pig liver transglutaminase adsorbed well to GTP-agarose affinity columns, but not to CTP-agarose columns, and the binding was inhibited by the presence of calcium ions. Specific binding of GTP to transglutaminase was demonstrated by photoaffinity labeling with 8-azidoguanosine 5'-[gamma-32P] triphosphate, which was inhibited by the presence of GTP or CaCl2. GTP inhibited trypsin proteolysis of guinea pig liver transglutaminase without affecting the trypsin proteolysis of chromogenic substrates. Proteolytic protection was reversed by the addition of calcium. This study demonstrates that GTP binds to transglutaminase and that both GTP and calcium ions function in concert to regulate transglutaminase structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号