首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial cytochromec (horse), which is a very efficient electron donor to bacterial photosynthetic reaction centersin vitro, binds to the reaction center ofRhodospirillum rubrum with an approximate dissociation constant of 0.3–0.5 µM at pH 8.2 and low ionic strength. The binding site for the reaction center is on the frontside of cytochromec which is the side with the exposed heme edge, as revealed by differential chemical acetylation of lysines of free and reaction-center-bound cytochromec. In contrast, bacterial cytochromec 2 was found previously to bind to the detergent-solubilized reaction center through its backside, i.e., the side opposite to the heme cleft [Rieder, R., Wiemken, V., Bachofen, R., and Bosshard, H. R. (1985).Biochem. Biophys. Res. Commun. 128, 120–126]. Binding of mitochondrial cytochromec but not of mitochondrial cytochromec 2 is strongly inhibited by low concentrations of poly-l-lysine. The results are difficult to reconcile with the existence of an electron transfer site on the backside of cytochromec 2.  相似文献   

2.
The steady-state operation of photosynthetic reaction center from Rhodobacter sphaeroides was investigated by measuring the rate of cytochrome photo-oxidation under intensive continuous illumination (808 nm, 5 W cm(-2)). The native quinone UQ(10) in Q(B) binding site of the reaction center was substituted by tailless UQ(0) and the binding parameters and the turnover rate of the UQ(0) was studied to test the recently discovered light-intensity dependent acceptor side effect (Gerencsér and Maróti 2006). The binding parameters of UQ(0) (k (on) = 2.1 x 10(5) M(-1) s(-1) and k (off) = 100 s(-1)) were characteristic to the RC exposed to high light-intensity. The dissociation constant (K (D) = 480 muM) determined under high light intensity is 2-3 times larger than that determined from flash-experiments. The light-intensity dependent acceleration of cytochrome turnover measured on reaction center of inhibited proton binding was independent of the type of the quinone and was sensitive only to the size ("pressure") of the quinone pool. The dissociation constants of different types of semiquinones show similarly high (several orders of magnitude) increase in the modified conformation of the Q(B) binding pocket due to high intensity of illumination. This result indicates the exclusive role of the quinone headgroup in the binding of semiquinone to different conformations of the protein.  相似文献   

3.
《FEBS letters》1986,205(2):275-281
EPR signals in the high-spin region were studied at 10 K in photosystem II (PS II) particles and in a purified oxygen-evolving PS II reaction center complex under oxidizing conditions. PS II particles showed EPR peaks at g = 8.0 and 5.6, confirming the recent report by Petrouleas and Diner [(1986) Biochim. Biophys. Acta 849, 264-275]. Addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or o-phenanthroline shifted the peaks to be closer to g = 6.0 depending on the medium pH. On the other hand, the PS II reaction center complex showed peaks at g = 6.1 and 7.8, and at g = 6.1 and 6.4, in the absence and presence of o-phenanthroline, respectively. All these peaks were found to be decreased by the illumination at 10 K. These results suggest that the high-spin signals are due to Q400, Fe(III) atom interacting with the PS II primary electron acceptor quinone QA as reported and that the Fe atom also interacts with the secondary acceptor quinone QB. This interaction seems to induce the highly asymmetric ligand coordination of the Fe atom and to be affected by DCMU and o-phenanthroline in a somewhat different manner.  相似文献   

4.
The effects of redox conversions of plastocyanin copper chromophore on the formation of plastocyanin complexes with cytochrome f and the reaction center of photosystem I from pea chloroplasts were studied. In order to investigate the complex formation plastocyanin and cytochrome f were immobilized on Sephadex G-200. The cytochrome f and reaction center assembly takes place on the immobilized plastocyanin, which is necessary for cytochrome f photooxidation. It was found that in a reconstituted system the reduced plastocyanin forms more stable complexes with the proteins than the oxidized one, which is due to its lower pI value.  相似文献   

5.
6.
Dynamics of the photosystem II reaction center   总被引:22,自引:0,他引:22  
A K Mattoo  J B Marder  M Edelman 《Cell》1989,56(2):241-246
  相似文献   

7.
Using a specially developed phosporoscopic attachment to spectropolarimeter, light induced spectra of circular dichroism (CD) in region 600-750 nm were measured for a pigment protein complex of photosystem 1 (PC-1) isolated from pea chloroplast (chlorophyll : P700 = 40). Minor components at 672 and 678 nm are observed in light induced spectra besides the components of dimer splitting of P700 Qy transition at 691 and 698 nm. Haussian deconvolution of light induced CD spectra of P700 and low temperature CD spectrum of PC-1 indicates that minor components are due to forms of antenna chlorophylls Chl672 and Chl678, rotational strength of that is changed by 2-4% as a result of P700 oxidation. Long term incubation of PC-1 with Triton X-100 inhibits P700 and destroys longwave optically active chlorophyll forms. A strong relation between dichroic density of 693 nm band in CD spectrum of PC-1 and the value of light induced absorption change at 698 nm could be used to determine P700 concentration on the basis of CD spectrum of PC-1. Such a relation shows that Chl693 is an important component of photo-system 1 reaction center. It is suggested that P700 is not an isolated dimer but it is included in the local complex from 8-10 chlorophyll molecules (Chl672, Chl678, Chl686, Chl693).  相似文献   

8.
Lipoamidase is found to be able to release various membrane-anchored enzymes from the membrane compartment of pig brain. Released enzymes revealed their intact enzyme activities in the soluble fraction. Lipoamidase could release at least two types of anchored enzymes, i.e. glycosyl-phosphatidylinositol-bonded and myristoylated enzymes, but not integral membrane bound enzymes. The reaction was competitively inhibited by lipoyllysine. This releasing mechanism found in the membranes may play important roles in the secretory mechanism of extracellular enzymes and also in the cellular signal-transduction system through topological changes in cellular enzymes.  相似文献   

9.
We have recently demonstrated, using site-directed mutagenesis, that soluble cytochromes interact with the Rubrivivax gelatinosus photosynthetic reaction center (RC) in the vicinity of the low-potential heme 1 (c-551, Em = 70 mV) of the tetraheme cytochrome subunit, the fourth heme from the special pair of bacteriochlorophyll [Osyczka, A., et al. (1998) Biochemistry 37, 11732-11744]. Although the mutations generated in that study did not show clear effects on the electron transfer from high-potential iron-sulfur protein (HiPIP), which is the major physiological electron donor to the RC in this bacterium, we report here that other site-directed mutations near the solvent-exposed edge of the same low-potential heme 1, V67K (valine-67 substituted by lysine) and E79K/E85K/E93K (glutamates-79, -85, and -93, all replaced by lysines), considerably inhibit the electron transfer from HiPIP to the RC. Thus, it is concluded that HiPIP, like soluble cytochromes, binds to the RC in the vicinity of the exposed part of the low-potential heme 1 of the cytochrome subunit, although some differences in the configurations of the HiPIP-RC and cytochrome c-RC transient complexes may be postulated.  相似文献   

10.
H.Y. Nakatani  B. Ke  E. Dolan  C.J. Arntzen 《BBA》1984,765(3):347-352
A Photosystem-II (PS-II)-enriched chloroplast submembrane fraction has been subjected to non-denaturing gel-electrophoresis. Two chlorophyll a (Chl a)-binding proteins associated with the core complex were isolated and spectrally characterized. The Chl protein with apparent apoprotein mass of 47 kDa (CP47) displayed a 695 nm fluorescence emission maximum (77 K) and light-induced absorption characteristics indicating the presence of the reaction center Chl, P-680, and its primary electron acceptor, pheophytin. A Chl protein of apparent apoprotein mass of 43 kDa (CP43) displayed a fluorescence emission maximum at 685 nm. We conclude that CP43 serves as an antenna Chl protein and the PS II reaction center is located in CP47.  相似文献   

11.
A complex of the electron-rich ion Cu(I) with the flavoquinone analogue 10-methylisoalloxazine has been synthesized and characterized by x-ray methods. The complex is unstable to oxygen. It is black-green in color, in contrast with the bright yellow, orange, or orange-brown crystalline complexes of 10-methylisoalloxazine or riboflavin with Cu(II), Ag(I), and Pb(II). These results are indicative of strong perturbation of the flavin electronic structure by the Cu(I) ion and suggest that this complex is a reasonable model for incipient transfer of an electron from a reduced metal to flavoquinone. the crystal structure is orthorhombic, Pna2-1, with unit cell constants a = 31.24(1) (figures in parentheses are estimated standard deviations), b = 12.862(4), c = 6.239(2) A, Pobs = 1.76 g per cm-3 and Pcalc = 1.77 g per cm-3 for Z = 4 and asymmetric formula CuClO4-2(C11H8N4O2). HCOOH. The final R factor based on 1250 counter-measured data is 8.8%. The 2 independent 10-methylisoalloxazine molecules, A and B, bind strongly to the cuprous ion throug N(5) of each flavin. The copper is approximately linearly coordinated with an N-Cu-N angle of 153(1) degrees, and Cu-N(5) distances of 1.94(2) A and 1.92(2) A. The next nearest atoms to Cu are the O(4) oxygens of each flavin, forming weak bonds with distances Cu-O(4) = 2.27(2) A and 2.21(2) A for molecules A and B. The dihedral angle between the 2 10-methylisoalloxazine molecules is 65.4 degrees.  相似文献   

12.
13.
Regulation of synthesis of the photosystem I reaction center   总被引:6,自引:2,他引:6       下载免费PDF全文
The in vivo biosynthesis of the P700 chlorophyll a-apoprotein was examined to determine whether this process is light regulated and to determine its relationship to chlorophyll accumulation during light- induced chloroplast development in barley (Hordeum vulgare L.). Rabbit antibodies to the 58,000-62,000-mol-wt apoprotein were used to measure relative synthesis rates by immunoprecipitation of in vivo labeled leaf proteins and to detect apoprotein accumulation on nitrocellulose protein blots. 5-d-old, dark-grown barley seedlings did not contain, or show net synthesis of, the 58,000-62,000-mol-wt polypeptide. When dark- grown barley seedlings were illuminated, net synthesis of the apoprotein was observed within the first 15 min of illumination and accumulated apoprotein was measurable after 1 h. After 4 h, P700 chlorophyll a-apoprotein biosynthesis accounted for up to 10% of the total cellular membrane protein synthesis. Changes in the rate of synthesis during chloroplast development suggest coordination between production of the 58,000-62,000-mol-wt polypeptide and the accumulation of chlorophyll. However, when plants were returned to darkness after a period of illumination (4 h) P700 chlorophyll a-apoprotein synthesis continued for a period of hours though at a reduced rate. Thus we found that neither illumination nor the rate of chlorophyll synthesis directly control the rate of apoprotein synthesis. The rapidity of the light-induced change in net synthesis of the apoprotein indicates that this response is tightly coupled to the primary events of light-induced chloroplast development. The data also demonstrate that de novo synthesis of the apoprotein is required for the onset of photosystem I activity in greening seedlings.  相似文献   

14.
A novel procedure is described for the isolation of monoamine oxidase from beef liver mitochondria. The procedure involves extraction of inert protein after simultaneous digestion with phospholipases A and C, followed by extraction of the enzyme by a low concentration of Triton X-100 and polymer partition. The specific activity equals the best value in the literature, but the yield is several times higher than in published procedures. On the basis of the flavin content the molecular weight is 146,000. Gel electrophoresis in the presence of sodium dodecyl sulfate and mercaptoethanol yields a single band of 62,000 molecular weight. Thus, it appears that the native enzyme contains two subunits not separable on polyacrylamide gels, only one of which possesses covalently linked flavin. A procedure is also described for the determination of the cysteinyl flavin content of purified preparations of the enzyme.  相似文献   

15.
Isolation and characterization of human breast milk lipoamidase   总被引:1,自引:0,他引:1  
The mean lipoamidase activity in human breast milk was found to be 0.073 nmol/min per mg (S.D. = 0.028, range = 0.020-0.123, n = 44). The mean lipoamidase activity is approximately 3-fold higher in milk than that in serum (0.023 nmol/min per mg, S.D. = 0.016, range = 0.001-0.059, n = 32). Lipoamidase was purified to 4400-fold by a four-step procedure from 330 ml of human breast milk. The purified enzyme was identified as a single band (Mr = 135,000) by sodium dodecyl sulfate/polyacrylamide electrophoresis. Analysis by Edman degradation indicated that the N-terminal amino acid was glycine. These results strongly suggest that milk lipoamidase is composed of a single polypeptide chain. The enzyme is considered to be a glycoprotein since it reacted positively to periodate-Schiff (PAS) staining. The isoelectric point of the enzyme was 4.2. After treatment of lipoamidase with sialidase, its position on isoelectric focusing gel moved from pH 4.2 to 4.6. This is strongly indicative that lipoamidase contains sialic acid residues. The optimum pH for the enzyme activity is 7.0. The Michaelis constant (KM) for lipoyl p-aminobenzoate is calculated as 25 microM. The enzyme activity was completely lost by heating 60 degrees C for 5 min. The effects of thiol-reactive agents, such as 2-mercaptoethanol (ME) and p-chloromercuribenzoate, were not significant. However, the enzyme activity was completely inhibited by 50 microM diisopropylfluorophosphate. Thus, this enzyme seemed to contain an essential serine residue in the active site.  相似文献   

16.
Structural characteristics of pigments and cofactors are analyzed in the X-ray structure of the Rhodobacter sphaeroides (Y strain) photochemical reaction center, recently refined at 3 Å resolution (Arnoux B, Gaucher JF, Ducruix A and Reiss-Husson F (1995) Acta Cryst D51: 368–379). As several structures are now available for these pigment-protein complexes from various Rhodobacter sphaeroides strains and for Rhodopseudomonas viridis, a detailed comparison was done for highlighting converging structural results as well as for pointing to incidental differences. Comparison of mean plane orientations and distances, and also direct superposition of the pigment arrays, indicated that the best agreement between all the structures concerned the dimer and the bacteriopheophytin of the A branch. In the Y reaction center structure the pentacoordination of the Mg++ atoms of the bacteriochlorophylls, and the H bonding pattern of the porphyrin conjugated carbonyls are consistent with the better resolved Rhodobacter sphaeroides recently published structure (Ermler U, Fritzsch G, Buchanan SK and Michel H (1995) Structure 2:925–936). Discrepancies between the various Rhodobacter sphaeroides structures are larger for the quinones, particularly the secondary one. In the Y reaction center structure the phytyl and isoprenoid chains of the cofactors are defined and their local mobility was evaluated by analyzing the temperature factor and the density of neighbouring atoms. Significant differences were observed between the A and B branches, and, within each branch, from the dimer to the quinone molecules. Correspondence to: F. Reiss-Husson  相似文献   

17.
The thermodynamic properties of redox components associated with the reaction center of Rhodopseudomonas viridis have been characterized with respect to their midpoint potentials and relationship with protons. In particular a midpoint potential for the intermediary electron carrier acting between the reaction center bacteriochlorophyll and the primary acceptor has been determined. The rationale for this measurement was that the light-induced triplet/biradical EPR signal would not be observed if this intermediate was chemically reduced before activation. The midpoint potential of the intermediary at pH 10.8 is about −400 mV (n = 1).  相似文献   

18.
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)—the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism—arose once in Earth’s history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe–4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.  相似文献   

19.
20.
The thermodynamic properties of redox components associated with the reaction center of Rhodopseudomonas viridis have been characterized with respect to their midpoint potentials and relationship with protons. In particular a midpoint potential for the intermediary electron carrier acting between the reaction center bacteriochlorophyll and the primary acceptor has been determined. The rationale for this measurement was that the light-induced triplet/biradical EPR signal would not be observed if this intermediate was chemically reduced before activation. The midpoint potential of the intermediary at pH 10.8 is about --400 mV (n=1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号