首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
RESUME. L' étude détaillée du cortex et des organelles buccaux adoraux d' Espejoia montre que ce Cilié possède une organisation ultrastructurale comparable à celle des Tétrahyméniens. Tout en restant conforme au plan général d'organisation de ces derniers, des variations spécifiques décelées tant au niveau du cortex d'une part, que des membranelles, d'autre part, font ressortir des affinités trés marquées pour le genre Glaucoma et autres Ciliés voisins. En conséquence, en nous appuyant en outre sur les données récentes de la morphogenèse, nous confirmons la position d' E. mucicola parmi les Tetrahymenina, dans la famille des Glaucomidae.  相似文献   

2.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. The representation of taste and other food-related stimuli in the orbitofrontal cortex of macaques is found from its lateral border throughout area 13 to within 7 mm of the midline, and in humans the representation of food-related and other pleasant stimuli is found particularly in the medial orbitofrontal cortex. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex, and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food which drives food intake. A neuronal representation of taste is also found in the pregenual cingulate cortex, which receives inputs from the orbitofrontal cortex, and in humans many pleasant stimuli activate the pregenual cingulate cortex, pointing towards this as an important area in motivation and emotion.  相似文献   

3.
Acute electrophysiological experiments on lizards (Ophisaurus apodus) showed that electrical stimulation of the anterior dorsolateral thalamic nucleus and medial forebrain bundle evokes short-latency responses in the hippocampal (mediodorsal) cortex which coincides in distribution and configuration with responses in the same cortical area to sensory stimulation. Extensive destruction of these structures inhibits, or even completely blocks, the conduction of sensory (visual, somatic, audiovibratory) and tactile impulses to the hippocampal cortex. It is concluded that the anterior dorsolateral thalamic nucleus and medial forebrain bundle constitutes, if not the only, at least the principal pathway for transmission of these sensory impulses to the hippocampal cortex in lizards.  相似文献   

4.
Cidaroid sea urchins are the sister clade to all other extant echinoids and have numerous unique features, including unusual primary spines. These lack an epidermis when mature, exposing their high‐magnesium calcite skeleton to seawater and allowing the settlement of numerous epibionts. Cidaroid spines are made of an inner core of classical monocrystalline skeleton and an outer layer of polycrystalline magnesium calcite. Interestingly, cidaroids survived the Permian‐Triassic crisis, which was characterized by severe acidification of the ocean. Currently, numerous members of this group inhabit the deep ocean, below the saturation horizon for their magnesium calcite skeleton. This suggests that members of this taxon may have characteristics that may allow them to resist ongoing ocean acidification linked to global change. We compared the effect of acidified seawater (pH 7.2, 7.6, or 8.2) on mature spines with a fully developed cortex to that on young, growing spines, in which only the stereom core was developed. The cortex of mature spines was much more resistant to etching than the stereom of young spines. We then examined the properties of the cortex that might be responsible for its resistance compared to the underlying stereomic layers, namely morphology, intramineral organic material, magnesium concentration, intrinsic solubility of the mineral, and density. Our results indicate that the acidification resistance of the cortex is probably due to its lower magnesium concentration and higher density, the latter reducing the amount of surface area in contact with acidified seawater. The biofilm and epibionts covering the cortex of mature spines may also reduce its exposure to seawater.  相似文献   

5.
In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earliest step in asymmetric positioning of anastral meiotic spindles, translocation to the cortex. This complex is composed of the kinesin-1 heavy chain orthologue, UNC-116, the kinesin light chain orthologues, KLC-1 and -2, and a novel cargo adaptor, KCA-1. Depletion of any of these subunits by RNA interference resulted in meiosis I metaphase spindles that remained stationary at a position several micrometers from the cell cortex during the time when wild-type spindles translocated to the cortex. After this prolonged stationary period, unc-116(RNAi) spindles moved to the cortex through a partially redundant mechanism that is dependent on the anaphase-promoting complex. This study thus reveals two sequential mechanisms for translocating anastral spindles to the oocyte cortex.  相似文献   

6.
ABSTRACT. Mytilophilus pacificae is an endocommensal ciliate found in the mantle cavity of the Pacific Coast mussel Mytilus californianus. In this paper we report our findings on pellicular organization of this species. Transmission and scanning electron microscope examination of the somatic cortex revealed that a number of different types of kinetids, i.e. monokinetids, dikinetids, and polykinetids are found in the locomotor cortex. The type and distribution of the kinetids are described. Surprisingly, the locomotor region was found to be highly variable among individuals with respect to its kinetid distribution; each cell appears to have its own characteristic kinetid pattern. Some cells have mostly monokinetids and dikinetids in their locomotor cortex, while others may have dikinetids and polykinetids but very few monokinetids. In contrast to the locomotor region, the thigmotactic field (a region specialized for attachment) is exclusively composed of dikinetids and shows no heterogeneity. The finding of ultrastructural variability in the locomotor cortex was unexpected since, in the view of the structural conservation hypothesis, the somatic cortex is seen as a "stable" element. These observations raise new questions with regard to cortical pattern formation in this organism.  相似文献   

7.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

8.
The effects of the phosphatase inhibitors, okadaic acid (OA), adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), and calyculin A (CL-A) on anaphase chromosome movement, cytokinesis, and cytoskeletal structures at cell division were examined by being microinjected into mitotic sand dollar eggs. When OA was injected, chromosome movement was inhibited and, moreover, chromosomes were ejected from the polar regions of the mitotic apparatus. By immunofluorescence, microtubules were observed to be severed in the OA-injected eggs, causing the smooth cell surface to be changed to an irregular surface. When ATPgammaS and CL-A were injected, the effect on cell shape was remarkable: In dividing eggs, furrowing stopped within several seconds after injection, small blebs appeared on the cell surface and became large, spherical or dumbbell cell shapes then changed to irregular forms, and subsequently cytoplasmic flow occurred. Microfilament detection revealed that actin accumulation in the cortex, which was not limited to the furrow cortex, occurred shortly after injection. Cortical accumulation of actin is thought to induce force generation and random cortical contraction, and accordingly to result in bleb extrusion from the cortex. Consequently, the phosphatase inhibitors inhibited the transition from mitosis to interphase by mediating cortical accumulation of actin filaments and/or fragmentation of microtubules.  相似文献   

9.
10.
Methylmercury distribution, biotransformation, and neurotoxicity in the brain of male Swiss albino mice were investigated. Mice were orally dosed with [203 Hg]methylmercury chloride (10 mg/kg) for 1 to 9 days. Methylmercury was evenly distributed among the posterior cerebral cortex, subcortex, brain stem, and cerebellum. The The anterior cerebral cortex had a significantly higher methylmercury concentration than the rest of the brain. The distribution of methylmercury's inorganic mercury metabolite was found to be uneven in the brain. The pattern of distribution was cerebellum greater than brain stem greater than subcortex greater than cerebral cortex. The order of the severity of histological damage was cerebral cortex greater than cerebellum greater than subcortex greater than brain stem. There was no correlation between methylmercury distribution in the brain and structural brain damage. However, there was a relationship between the distribution of methylmercury's inorganic mercury metabolite and structural damage in the anterior cerebral cortex (positive correlation) and the anterior subcortex (negative correlation). There was also a positive correlation between the fraction of methylmercury's metabolite of the total mercury present and structural brain damage in the anterior cerebral cortex. This study suggests that biotransformation may have a role in mediating methylmercury neurotoxicity.  相似文献   

11.
Depression can develop in 20% of the patients with a myocardial infarction (MI). Pathobiological mechanisms underlying the development of mood disorders in these patients are unknown. Since post-MI depression has been associated with increased risk of mortality we hypothesized that dysfunction of limbic circuitry is part of the pathogenic processes. Both mood and cardiovascular functions are controlled by the limbic system. Here, we will review a set of experiments that support this hypothesis. Using the retrograde transneuronal transport of pseudorabies virus central autonomic cardiomotor circuitry was identified and Fos protein expression was used for characterization of networks participating in cardiac pain perception, evaluation, and initiation of coping responses. A modified conscious rat model of acute heart pain was employed for induction of cerebral Fos protein expression. Experiments investigating the effects of MI on cerebral activity in the rat showed a selective regional endothelial leakage mainly in the prefrontal cortex, and most severely in the anterior cingulate cortex. This effect was mimicked with intravenous injections of recombinant Tumor Necrosis Factor alpha, which led to the hypothesis that post-MI depression evolves from selective dysfunction of the prefrontal, anterior cingulate cortex in response to (excessive) release of mediators of inflammation. Evidence is provided that cingulate cortex dysfunction may underlie occurrence of mood disorders and derangement of cardiac autonomic control, which would explain the increased risk of mortality associated with post-MI depression.  相似文献   

12.
Vegetative and reproductive morphology and ultrastructure were examined for the three genera of the freshwater red algal family Lemaneaceae: Lemanea (two species, seven populations), Paralemanea (two species, three populations) and Psilosiphon (one species, one population). Psilosiphon is readily distinguished from the other two genera in having an outer cortex composed of well-defined filaments interconnected with a dense medulla (both cell types being little vacuolated), spores cleaving off obliquely, putative spermatangia scattered on the thallus surface and reproduction by adventitious filaments. Based on the distinctness of this genus (and corroborated by molecular phylogenies in preparation), a new family is described, the Psilosiphonaceae. Lemanea and Paralemanea appear to be closely related, with an outer cortex that has cells of increasing size and vacuolation from the periphery to the interior and not in obvious rows, a central lumen that contains few ray cells but no medullary filaments, sexual reproduction with spermatangia in distinct clusters, and carpospores in chains, some of which can germinate in the thallus lumen. Lemanea and Paralemanea have distinguishing characteristics that the other genus does not: for Lemanea, hair cells, ray cells abutting the outer cortex and spermatangia in patches; for Paralemanea, no hair cells or ray cells appressed to the outer cortex, inner cortical filaments surrounding the central axis and spermatangia in rings.  相似文献   

13.
The NGF content in each region of the brain of four-week-old rats was ranked in the decreasing order of cerebral cortex, hippocampus, cerebellum, midbrain/diencephalon, and pons/medulla ob-longata, and the NGF concentration, in the decreasing order of hippocampus, cerebral cortex, cerebellum, midbrain/diencephalon, and pons/medulla oblongata in both AFD and SFD groups. The NGF content and concentration in the cerebral cortex were about the same value at each age between those in the AFD and SFD groups. Those in the hippocampus were a little higher in the SFD group than in the AFD group at the ages of three and four weeks, unlike those in the other regions, where the values for the cerebellum, midbrain/diencephalon and pons/medulla oblongata tended to be somewhat higher in the AFD group than in the SFD group. The NGF concentrations in the hippocampus and cerebral cortex increased with growth: the concentration in the hippocampus at four weeks of age was about 4-fold of that at one week in the AFD group and about 5.7-fold of that at one week in the SFD group; and likewise the concentration in the cerebral cortex at four weeks of age was about 5.3-fold in the AFD group and about 7-fold in the SFD group. The NGF concentrations in the cerebellum decreased, and those in midbrain/diencephalon and pons/medulla oblongata hardly changed with growth in either AFD or SFD group. From these results NGF may have stronger implications for the neuronal growth in the hippocampus compared with those in the lower brain regions of the SFD rats.  相似文献   

14.
Detailed morphometric analysis of cell shapes and an immunofluorescent study of microtubules were carried out on primary roots of Zea mays L. Two types of cells were found to be formed within the postmitotic isodiametric growth (PIG) region of the root cortex that were differentially responsive to low level of exogenous ethylene. The innermost and central cell rows of the cortex were sensitive to ethylene treatment and showed a disturbed distribution of cortical microtubules (CMTs) as well as changed polarity of cell growth, whereas the 2–3 outermost cell rows were less sensitive in this respect. This suggests that post-mitotic cells of the inner cortex are specific targets for ethylene action. These properties of the inner cortex are compatible with its cells being involved in the formation of aerenchyma; they may also favour root growth in compacted soil. By contrast, the specific properties of the outer cortex indicate that this tissue domain is necessary for the gaseous impermeability and the mechanical strengthening of subjacent aerenchymatous cortex, especially in the mature region of the root. Ethylene affected neither the pattern of cortical cell expansion in the meristem nor the position of the PIG region with respect to the root tip. This contrasts with gibberellin-deficiency which affected these parameters in both parts of the cortex. These observations indicate a fundamental difference between the role of these two phytohormones in the morphogenesis and development of maize roots.  相似文献   

15.
Summary Evoked potential (EP) recordings in the auditory cortex of the porpoise,Phocoena phocoena, were used to obtain data characterizing the auditory perception of this dolphin. The frequency threshold curves showed that the lowest EP thresholds were within 120–130 kHz. An additional sensitivity peak was observed between 20 and 30 kHz. The minimal EP threshold to noise burst was 3·10–4–10/s-3 Pa. The threshold for response to modulations in sound intensity was below 0.5 dB and about 0.1% for frequency modulations. Special attention was paid to the dependence of the auditory cortex EP on the temporal parameters of the acoustic stimuli: sound burst duration, rise time, and repetition rate. The data indicate that the porpoise auditory cortex is adapted to detect ultrasonic, brief, fast rising, and closely spaced sounds like echolocating clicks.Abbreviation EP evoked potential  相似文献   

16.
The isolation and characterization of highly purified and structurally well-preserved peroxisomes from the renal cortex of different mammalian species (beef, sheep, and cat) is reported. Renal cortex tissue was homogenized and a peroxisome-enriched light mitochondrial fraction was prepared by differential centrifugation. This was subfractionated by density-dependent banding on a linear gradient of metrizamide (1.12-1.26 g/cm3) using a Beckman VTi 50 vertical rotor. Peroxisomes banded at a mean density of 1.225 cm3. Ultrastructural morphometric examination revealed that peroxisomes made up 97 to 98% of the isolated fractions. By biochemical analysis the contamination with marker enzymes of mitochondria and lysosomes was extremely low. The specific activity of catalase was enriched, depending on the species, between 28- and 38-fold over the homogenate. Peroxisome preparations from all three species exhibited a high but varying level of activity for cyanide-insensitive lipid beta-oxidation. In beef and sheep preparations a small amount of esterase activity cosediments with peroxisomes. These peroxisomes show distinct structural membrane associations with smooth elements of ER. Urate oxidase, a marker enzyme for rat liver peroxisomes, is found only in peroxisomes prepared from beef kidney cortex, with sheep and cat preparations being negative. This correlated with the occurrence of polytubular inclusions in the beef kidney peroxisomes. The large size and the angular shape of isolated peroxisomes as well as the presence of paracrystalline matrical inclusions imply that the majority of peroxisomes are derived from the epithelial cells of the proximal tubule of the kidney cortex. The significant differences found in the characteristics of the renal peroxisomes in three different species investigated, demonstrate the remarkable adaptability and plasticity of this organelle.  相似文献   

17.
It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his "autobiographical self", the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices.  相似文献   

18.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

19.
Visual attention: the where,what, how and why of saliency   总被引:6,自引:0,他引:6  
Attention influences the processing of visual information even in the earliest areas of primate visual cortex. There is converging evidence that the interaction of bottom-up sensory information and top-down attentional influences creates an integrated saliency map, that is, a topographic representation of relative stimulus strength and behavioral relevance across visual space. This map appears to be distributed across areas of the visual cortex, and is closely linked to the oculomotor system that controls eye movements and orients the gaze to locations in the visual scene characterized by a high salience.  相似文献   

20.
Satoru Otani   《Journal of Physiology》2003,97(4-6):423-430
The prelimbic area of rat medial frontal cortex may be functionally analogous to human/primate dorsolateral prefrontal cortex. This area may be involved in selective attention to the external stimuli and the coupling of the attention to a repertory of actions. It was suggested that this function may rely on a form of long-term memory [Biol. Rev. 77 (2002) 563]. Indeed, during learning of this type of behavior, a portion of prelimbic neurons persistently change their firing characteristics [Prog. Brain Res. 126 (2000) 287]. It is therefore important to study long-term potentiation (LTP) and depression (LTD) in rat prelimbic neurons. In this article, the author first briefly reviews recent findings on the prefrontal cortex function and discusses that the prefrontal cortex may be involved in long-term memory. Second, the author will show some new results which indicate that quasi-physiological patterns of stimuli mimicking prelimbic neuronal activity during behavior can induce LTP in prelimbic pyramidal neuron synapses. These results suggest that prelimbic neuronal activity during behavior may lastingly modify prelimbic synaptic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号