首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The allelic state of relA influences the phenotype of Escherichia coli strains carrying the lysA22 mutation: lysA22 relA strains are Lys where lysA22 relA + strains grow (slowly) in the absence of lysine. This physiological effect has been related to an effect of the expression of the relA locus on the regulation of lysine biosynthesis. The fully derepressed levels of some lysine enzymes (aspartokinase III, aspartic semialdehyde dehydrogenase, dihydrodipicolinate reductase) are observed under lysine limitation only in rel + strains. And the induction of DAP-decarboxylase by DAP is much higher in rel + than in rel strains when an amino acid limitation of growth is also realised. These results are in agreement with the hypothesis of Stephens et al. (1975) on a possible role of the stringent regulation as a general signal for amino acid deficiency.  相似文献   

2.
The phenomenon of nonsense suppression, which leads to the stop codons reading-through, may be related to disturbances in the operation of various components of the translation apparatus and the proteins interacting with them. The phosphatase Ppzlp is one of the factors affecting the nonsense suppression efficiency in Saccharomyces yeast. In this work, the impact of the overexpression of gene PPZ1 and its mutant allele PPZ1-R451L on the phenotypic expression of various mutant alleles of genes SUP35 and SUP45 or the yeast prion [PSI +] was analyzed. On the basis of the data obtained, a suggestion about the possible role of proteins Sup35p and Sup45p in the processes mediating the influence of gene PPZ1 overexpression on the efficiency of nonsense suppression is made.  相似文献   

3.
Cell growth limitation is known to be an important condition that enhances l-valine synthesis in Corynebacterium glutamicum recombinant strains with l-isoleucine auxotrophy. To identify whether it is the limited availability of l-isoleucine itself or the l-isoleucine limitation-induced rel-dependent ppGpp-mediated stringent response that is essential for the enhancement of l-valine synthesis in growth-limited C. glutamicum cells, we deleted the rel gene, thereby constructing a relaxed (rel ) C. glutamicum ΔilvA ΔpanB Δrel ilvNM13 (pECKAilvBNC) strain. Variations in enzyme activity and l-valine synthesis in rel + and rel strains under conditions of l-isoleucine excess and limitation were investigated. A sharp increase in acetohydroxy acid synthase (AHAS) activity, a slight increase in acetohydroxyacid isomeroreductase (AHAIR) activity, and a dramatic increase in l-valine synthesis were observed in both rel + and rel cells exposed to l-isoleucine limitation. Although the positive effect of induction of the stringent response on AHAS and AHAIR upregulation in cells was not confirmed, we found the stringent response to be beneficial for maintaining increased AHAS, dihydroxyacid dehydratase, and transaminase B activity and l-valine synthesis in cells during the stationary growth phase.  相似文献   

4.
Summary The idea has been tested here that the aberration in amino acid controlled regulation of RNA synthesis in a mutant strain ofE. coli might reflect a major breakdown in the specificity of transfer of amino acids to S-RNA. For this purpose, S-RNA and amino acid activating enzymes were extracted from bacteria carrying either the normalRC st or the aberrantRC rel allele of the RNA control gene. The purified S-RNA preparations were first charged enzymatically with one or more of the 20 standard amino acids, then oxidized with periodate, and finally reisolated and retested for their residual capacity to accept an amino acid that was absent from the preliminary charging mixture. If preliminary charging transferred an amino acid to a non-cognate S-RNA species belonging to an absent amino acid, then the acceptor capacity for the missing amino acid would survive periodate oxidation and reveal its presence on recharging with that amino acid after post-periodate reisolation of the S-RNA. The results presented here show that there does not appear to exist any such major breakdown of transfer specificity in eitherRC st orRC rel bacteria: preliminary charging of the S-RNA fromRC rel bacteria with 19 of the 20 standard amino acids by use of the homologous amino acid activating enzymes does not afford protection against periodate oxidation for any appreciable fraction of the acceptor capacity for the absent 20th amino acid (when that amino acid is either methionine or arginine). It is unlikely, therefore, that thecatholic inducer, postulated to explain the continued RNA synthesis ofRC rel amino acid auxotrophs in the absence of their growth requirement, is one of the 20 standard amino acids.This investigation was supported by Public Health Service Research Grant CA 02129, from the National Cancer Institute.  相似文献   

5.
Summary A genetic locus has been identified which controls the basal synthesis of ppGpp in growing E. coli. Cells carrying a recessive allele of the relX gene have a very low concentration of ppGpp during balanced growth, and fail to accumulate ppGpp in response to carbon/energy source downshift. Moreover, the recessive relX allele renders the cells unable to grow at 42° C and, when coupled with relA, makes the cells sensitive to the presence of leucine in minimal medium. RelX is cotransduced with fuc and relA and located at approximately 59.4 min on the E. coli genetic map.  相似文献   

6.
7.
Summary The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA.It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.  相似文献   

8.
9.
At present, the machinery supporting the viability of organisms possessing nonsense mutations in essential genes is not entirely understood. Nonsense mutants of Saccharomyces cerevisiae yeast containing a premature translation termination codon in the essential SUP45 gene are known. These strains are viable in the absence of mutant suppressor tRNAs; hence, the existence of alternative mechanisms providing nonsense suppression and mutant viability is conjectured. Analysis of clones obtained by transformation of a strain bearing a nonsense-mutant allele of SUP45 with a multicopy yeast genomic library revealed three genes encoding wild-type tRNATyr and four genes encoding wild-type tRNAGln, which increased nonsense mutant viability. Moreover, overexpression of these genes leads to an increase in the amount of the full-length eRF1 protein in cells and compensates for heat sensitivity in the nonsense mutants. Probable ways of tRNATyr and tRNAGln influence on the increase in the viability of strains with nonsense mutations in SUP45 are discussed.  相似文献   

10.
Previous experiments have shown that limitation for certain aminoacyl-tRNA species results in phenotypic suppression of a subset of frameshift mutant alleles, including members in both the (+) and (-) incorrect reading frames. Here, we demonstrate that such phenotypic suppression can occur through a ribosome reading frame shift at a hungry AAG codon calling for lysyl-tRNA in short supply. Direct amino acid sequence analysis of the product and DNA sequence manipulation of the gene demonstrate that the ribosome frameshift occurs through a movement of one base to the left, so as to decode the triplet overlapping the hungry codon from the left or 5' side, followed by continued normal translation in the new, shifted reading frame.  相似文献   

11.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

12.
Summary A relationship between serine-induced growth sensitivity and the cAMP-CAP complex is established. Mutants of Escherichia coli K 12 deficient either in the cya or crp gene function exhibit a resistant phenotype on serine media although they harbor a relA allele normally leading to sensitivity toward serine. The presence of a crp * allele in a cya rela background restores the sensitivity phenotype, while the analysis of serine resistant mutants selected from a crp * cya relA strains shows that the mutation leading to resistance is located at, or very near, the crp gene, giving a more or less Crp- phenotype. In addition crp * cya relA strains excrete large quantities of 2-ketobutyrate when grown on glucose M63 medium. This excretion is unambiguously linked to the presence of the crp * allele and is correlated with an enhanced threonine deaminase activity. Besides, the complex regulation exerted on the acetolactate synthase activities is discussed.  相似文献   

13.
Study of the molecular basis for Legionella pneumophila pathogenicity would be facilitated with an efficient mutagen that can not only mark genomic mutations, but can also be used to reflect gene expression during macrophage infection. A derivative of Jn903, Tn903dlllacZ, is shown to transpose with high efficiency in L. pneumophila. Tn903dlllacZ encodes resistance to kanamycin (KmR) and carries a 5’truncated lacZ gene that can form translational fusions to L. pneumophila genes upon transposition. The cls-acting Tn903 transposase is supplied outside Tn903dlllacZ, and hence chromosomally integrated copies are stable. KmR LacZ+ insertion mutants of L. pneumophila were isolated and shown by DNA hybridization to carry a single Tn903dlllacZ inserted within their chromosomes at various locations. One particular KmR LacZ+ mutant, AB1156, does not produce the brown pigment (Pig) characteristic of Legionella species. Tn903dlllacZ is responsible for this phenotype since reintroduction of the transposonlinked mutation into a wild-type background results in a Pig phenotype. L. pneumophila pigment production is normally observed in stationary-phase growth of cells in culture, and β-galactosidase activity measured from the pig::lacZ fusion increased during the logarithmic-phase growth and peaked at the onset of stationary phase. Interestingly, pig::lacZ expression also increased during macrophage infection. The pigment itself, however, does not appear to be required for L. pneumophila to grow within or kill host macrophages.  相似文献   

14.
The in vitro movement of ribosomes over messenger RNA was studied in both the presence and the absence of protein synthesis. For this purpose, labeled polysomes were extracted from rel+ and rel? strains of Escherichia coli grown in the presence of radioactive uracil and incubated in a cell-free system containing tRNA, amino acids, soluble enzymes and a source of energy. The gradual conversion of the labeled polysomes into monosomes and ribosomal subunits was followed by subjecting the reaction mixture to sucrose gradient sedimentation after various incubation times and measuring the radioactivity present in the three relevant ribosomal fractions.It was found that when the conditions of incubation allow protein synthesis to occur, polysomes extracted from rel+ and rel? cells are converted mainly into free monosomes, which can be made to dissociate into subunits by high-sodium or low-magnesium ion concentrations. Under conditions in which protein synthesis cannot occur because a mutant aminoacyl-tRNA synthetase has been rendered inactive, polysome conversion still occurs, though to a reduced extent. When the products of such residual run-off are examined, however, a difference is manifest between polysomes extracted from rel+ and from rel? strains: whereas the polysomes from the rel? strain are still converted into free monosomes even in the absence of protein synthesis, the polysomes from the rel+ strain are now converted mainly into subunits. It can be inferred, therefore, that ribosomes from rel? bacteria, but not those from rel+ bacteria, continue movement over messenger RNA in the absence of protein synthesis.Studies of mixed extracts from rel? and rel+ bacteria have shown that the character of the run-off process does not depend on the source of tRNA and soluble enzymes; the proportions of monosomes and subunits among the run-off products formed in the absence of protein synthesis depend only on the source of the polysomes. It is suggested that the mutation of the rel gene alters the functional architecture of ribosomes.  相似文献   

15.
Previously we characterized [NSI +], determinant, that possesses the features of a yeast prion. This determinant causes the nonsense suppression in strains that bear different N-substituted variants of Sup35p, which is a translation release factor eRF3. As a result of the genomic screen, we identified VTS1, the overexpression of which is a phenotypic copy of [NSI +]. Here, we analyzed the influence of SUP35 and VTS1 on [NSI +]. We demonstrated nonsense suppression in the [NSI +] strains, which appears when SUP35 expression was decreased or against a background of general defects in the fidelity of translation termination. [NSI +] has also been shown to increase VTS1 mRNA amounts. These findings facilitate the insight into the mechanisms of nonsense suppression in the [NSI +] strains and narrow the range of candidates for [NSI +] determinant.  相似文献   

16.
Summary The mechanisms of S. typhimurium reversion from histidine dependence (his ) to histidine independence (his +) were studied. Genetic and phenotypic characteristics of revertants induced by nitrosoguanidine were analyzed. Among them a class of slow-growing revertants was selected. It is found that all of these slow-growing revertants carry the original UGA nonsense mutation within the histidine operon. They are streptomycin sensitive and no specific suppressor(s) for UGA nonsense codon are demonstrable. The suppression takes place in the absence of conventional nonsense UGA suppressor(s). It is seemingly due to a ribosomal mutation which in turn is likely to produce ambiguity in the process of translation and which suppresses the UGA nonsense codon. The rate of both in vivo and in vitro protein synthesis is significantly reduced. The fact that streptomycin, at sublethal doses, reduced the growth rate of these mutants, probably because of the simultaneous burden of two ambiguity factors, suggests that the mutants described may be regarded as a kind of ram (ribosomal ambiguity) mutants with a his sup genotype. Their capacity to translate poly-U is reduced and in that respect they differ from ram mutants of Escherichia coli.  相似文献   

17.
Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.Translation termination is mediated by one of the three stop codons (UAA, UAG, or UGA). When such stop codons arise in coding sequences due to mutations, referred to as nonsense mutations, they lead to abrupt arrest of the translation process. However, the termination efficiency of such nonsense codons is not 100%, as certain tRNAs have the ability to read these nonsense codons. Genetic code ambiguity is seen in several organisms. Stop codons have been shown to have alternate roles apart from translation termination. In organisms from all three domains of life, UGA encodes selenocysteine through a specialized mechanism. In Methanosarcinaceae, UAG encodes pyrrolysine (3). UAA and UAG are read as glutamine codons in some green algae and ciliates such as Tetrahymena and Diplomonads (24), and UAG alone encodes glutamine in Moloney murine leukemia virus (32). UGA encodes cysteine in Euplotes; tryptophan in some ciliates, Mycoplasma species, Spiroplasma citri, Bacillus, and tobacco rattle virus; and an unidentified amino acid in Pseudomicrothorax dubius and Nyctotherus ovalis (30). In certain cases the context of the stop codon in translational readthrough has been shown to play a role; for example, it has been reported that in vitro in tobacco mosaic virus, UAG and UAA are misread by tRNATyr in a highly context-dependent manner (34, 9).Termination suppressors are of three types, i.e., amber, ochre, and opal suppressors, which are named based on their ability to suppress the three stop codons. Amber suppressors can suppress only amber codons, whereas ochre suppressors can suppress ochre codons (by normal base pairing) as well as amber codons (by wobbling) and opal suppressors can read opal and UGG tryptophan codon in certain cases. As described by Sambrook et al. (27), a few amber suppressors can also suppress ochre mutations by wobbling. The suppression efficiency varies among these suppressors, with amber suppressors generally showing increased efficiency over ochre and opal suppressors. supE44, an amber suppressor tRNA, is an allele of and is found in many commonly used strains of Escherichia coli K-12. Earlier studies have shown that supE44 is a weak amber suppressor and that its efficiency varies up to 35-fold depending on the reading context of the stop codon (8).Translational accuracy depends on several factors, which include charging of tRNAs with specific amino acids, mRNA decoding, and the presence of antibiotics such as streptomycin and mutations in ribosomal proteins which modulate the fidelity of the translational machinery. Among these, mRNA decoding errors have been reported to occur at a frequency ranging from about 10−3 to 10−4 per codon. Translational misreading errors also largely depend on the competition between cognate and near-cognate tRNA species. Poor availability of cognate tRNAs increases misreading (18).Several studies with E. coli and Saccharomyces cerevisiae have shown the readthrough of nonsense codons in suppressor-free cells. In a suppressor-free E. coli strain, it has been shown in vitro that glutamine is incorporated at the nonsense codons UAG and UAA (26). It has been reported that overexpression of wild-type tRNAGln in yeast suppresses amber as well as ochre mutations (25). In this study, we have confirmed the presence of an amber suppressor mutation in the glnX gene in a supE44 strain by sequence analysis. This was done essentially because we observed that supE44 could also suppress lacZ ochre mutations, albeit inefficiently. On further investigation using an in vivo luciferase reporter assay system for tRNA-mediated nonsense suppression (28), we found that the efficiency of suppression of amber lesion by supE44 is significantly higher than that reported previously in the literature. An increased ability to suppress ochre and opal nonsense mutations was observed in cells bearing supE44 compared to in the wild type. Such an effect was observed only in the stationary phase and was abolished in logarithmic phase.  相似文献   

18.
Summary Secondary mutations which increase the efficiency of suppression of nonsense mutations in the rHB cistron of bacteriophage T4 have been isolated. These secondary mutations, called context mutations, map at sites very close to the nonsense codon, possibly on the promotor distal side. In context-nonsense double mutants, the amount of suppressed gene product is increased approximately 10-fold. The context mutations examined can act on the UAA (ochre) nonsense allele as well as on the UAG (amber) nonsense allele at a given site. These context mutations affect all suppression mechanisms analyzed (genetic suppressors. 5-fluorouracil suppression and spontaneous suppression).We suggest that context mutations affect information which is significant to the termination of polypeptide chains. According to our view, context mutations change the immediate neighborhood of nonsense mutations and so reduce the degree of resemblance to the sequences normally used for the termination of translation.  相似文献   

19.
Using tRNA and aminoacyl-tRNA synthetase preparations from Drosophila melanogaster, a method has been developed for simultaneously estimating levels of at least 15 different species of aminoacyl-tRNA. 14C-labeled aminoacyl-tRNA, which is formed during a single incubation of tRNA with a mixture of 15 14C-labeled amino acids, is purified, hydrolysed, and the composition of the mixture of 14C-labeled amino acids so obtained is determined using an Amino Acid Analyser.The sensitivity of the method and the reproducibility of the results obtained are such that it is suitable for detecting changes in tRNA patterns in comparative studies.  相似文献   

20.
To study the variation in spontaneous mutation frequencies in different chromosomal domains, a mini-Mu-kan-lacZ transposable element was constructed to insert the lacZ (Trp570 → Opal) allele into many different loci in the Escherichia coli chromosome. Papillation on MacConkey lactose plates was used to screen for mini-Mu insertion mutants with elevated levels of spontaneous mutagenesis of lacZop → LacZ+ candidates were then screened for normal mutation frequencies in other genes. Two different insertion mutants with this enhanced mutagenesis phenotype were isolated from 14 000 colonies, and named plm-1 (preferential lacZmutagenesis) and plm-2. The frequency of LacZ→ LacZ+ mutations in these plm mutants was over 400-fold higher than that in isogenic strains containing mini-Mu-kan-lacZop insertions at other loci. Six Lac+ reversion (or suppression) mutations obtained from each of the two plm mutants were mapped by P1 transduction and all were found to be linked to the Kanr gene in the mini-Mu-kan-lacZop, suggesting that a localized mutagenic event is responsible for the preferential mutagenesis. Furthermore, both the LacZ+→ LacZand Kanr→ Kans mutant frequencies of these Lac+ revertants were in the range of 10−3 to 10−2, indicating that this putative localized mutagenesis is neither allele nor gene specific. To identify the plm loci, the chromosomal regions flanking the mini-Mu insertion sites were cloned and sequenced. A computer-assisted database search of homologous sequences revealed that the plm-1 locus is identical to the mutS gene; the mini-Mu insertion most probably results in the production of a truncated MutS protein. We suggest that the enhanced lacZ mutation frequency in plm-1 may be associated with an active process involving the putative truncated MutS protein. The DNA sequence of the plm-2 locus matched a putative malate oxidoreductase gene located at 55.5 min of the E. coli chromosome. Received: 1 August 1996 / Accepted: 3 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号