首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lingcod muscle guanine deaminase   总被引:1,自引:0,他引:1  
  相似文献   

2.
Guanine deaminase (EC 3.5.4.3, guanine aminohydrolase [GAH]) was purified 3248-fold from human liver to homogeneity with a specific activity of 21.5. A combination of ammonium sulfate fractionation, and DEAE-cellulose, hydroxylapatite, and affinity chromatography with guanine triphosphate ligand were used to purify the enzyme. The enzyme was a dimer protein of a molecular weight of 120,000 with each subunit of 59,000 as determined by gel filtration and sodium dodecyl sulfate-gel electrophoresis. Isoelectric focusing gave a pI of 4.76. It was found to be an acidic protein, as evidenced by the amino acid analysis, enriched with glutamate, aspartate, alanine and glycine. It showed a sharp pH optimum of 8.0. The apparent Km for guanine was determined to be 1.53 X 10(-5) M at pH 6.0 and 2 X 10(-4) M for 8-azaguanine as a substrate at pH 6.0. The enzyme was found to be sensitive to p-hydroxymercuribenzoate inhibition with a Ki of 1.53 X 10(-5) M and a Ki of 5 X 10(-5) M with 5-aminoimidazole-4-carboxamide as an inhibitor. The inhibition with iodoacetic acid showed only a 7% loss in the activity at 1 X 10(-4) M and a 24% loss at 1 X 10(-3) M after 30 min of incubation, whereas p-hydroxymercuribenzoate incubation for 30 min resulted in a 91% loss of activity at a concentration of 1 X 10(-4) M. Guanine was the substrate for all of the inhibition studies. The enzyme was observed to be stable up to 40 degrees C, with a loss of almost all activity at 65 degrees C with 30 min incubation. Two pKa values were obtained at 5.85 and 8.0. Analysis of the N-terminal amino acid proved to be valine while the C-terminal residue was identified as alanine.  相似文献   

3.
A procedure for the purification of guanine deaminase inhibitor from human brain mitochondria is described. The inhibitor was enriched about 150-fold with recoveries of over 65%. It is nondialyzable, insoluble in water, and stable for over 30 days at–16°C. However, the protein is completely inactivated at 50°C in 5 min. The purified protein also inhibits the activities of a number of other enzymes.  相似文献   

4.
The action of some known and new synthesized substituted 1,2,3-triazoles on adenosine deaminase, guanine deaminase and xanthine oxidase was studied. The effect of substituents in 1, 4 and 5 positions was studied and discussed. The presence of a carboxamido group in 4 position seems to be essential in the binding to adenosine deaminase.  相似文献   

5.
6.
7.
Guanine deaminase (guanine aminohydrolase, EC 3.5.4.3) from pig brain was purified to homogeneity by column chromatography and ammonium sulphate fractionation. Homogeneity was established by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulphate (SDS). The molecular weight of 110 000 was determined by gel filtration and sucrose density gradient centrifugation. SDS polyacrylamide gel electrophoresis indicated subunits of a molecular weight of 50 000. The amino acid composition, the isoelectric point and the number of -SH groups were determined. 5.5'-Dithiobis-(2-nitrobenzoic acid) reacts with about seven -SH groups in the native enzyme, but upon denaturation with SDS, 10 -SH groups react with this former reagent. Using electrolytic reduction, 44 half-cystines were determined in accordance with the number of cysteic acid residues determined by amino acid analysis after performic acid oxidation. The Km values determined for substrates of the enzyme were 1.1 . 10(-5) M for guanine in 0.1 M Tris. HCl buffer (pH 8.0) and 3.3 . 10(-4) M for 8-azaguanine in 0.1 M phosphate buffer, pH 6.4. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 6.2 and pH 8.2. The chemical and kinetic evidence suggests that cysteine and histidine may be essential for the catalysis.  相似文献   

8.
9.
10.
Guanine deaminases (GDs) are essential enzymes that regulate the overall nucleobase pool. Since the deamination of guanine to xanthine results in the production of a mutagenic base, these enzymes have evolved to be very specific in nature. Surprisingly, they accept structurally distinct triazine ammeline, an intermediate in the melamine pathway, as one of the moonlighting substrates. Here, by employing NE0047 (a GD from Nitrosomonas europaea), we delineate the nuance in the catalytic mechanism that allows these two distinct substrates to be catalyzed. A combination of enzyme kinetics, X-ray crystallographic, and calorimetric studies reveal that GDs operate via a dual proton shuttle mechanism with two glutamates, E79 and E143, crucial for deamination. Additionally, N66 appears to be central for substrate anchoring and participates in catalysis. The study highlights the importance of closure of the catalytic loop and of maintenance of the hydrophobic core by capping residues like F141 and F48 for the creation of an apt environment for activation of the zinc-assisted catalysis. This study also analyzes evolutionarily distinct GDs and asserts that GDs incorporate subtle variations in the active site architectures while keeping the most critical active site determinants conserved.  相似文献   

11.
Two isoenzymes of guanine deaminase could be demonstrated in the liver of mice subjected to guanine stress while the salinetreated controls showed only one. The one appearing under stress was a regulatory protein showing a sigmoidal substrate saturation curve, but was not influenced by GTP, allantoin or Mg2+  相似文献   

12.
1. In kidney, but not in rat whole brain and liver, guanine-deaminase activity was localized almost exclusively in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, as in brain and liver, the enzymic activity recovered in the supernatant was higher than that in the whole homogenate. The particulate fractions of kidney, especially the heavy mitochondria, brought about powerful inhibition of the supernatant guanine-deaminase activity. 2. In spleen, as in kidney, guanine-deaminase activity was localized in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, the particulate fractions did not inhibit the activity of the supernatant. 3. Guanine-deaminase activity in rat brain was absent from the cerebellum and present only in the cerebral hemispheres. The inhibitor of guanine deaminase was located exclusively in the cerebellum, where it was associated with the particles sedimenting at 5000g from sucrose homogenates. 4. Homogenates of cerebral hemispheres, the separated cortex or the remaining portion of the hemispheres had significantly higher guanine-deaminase activity than homogenates of whole brain. The enzymic activity of the subcellular particulate fractions was nearly the same. 5. Guanine deaminase was purified from the 15000g supernatant of sucrose homogenates of whole brain. The enzyme separated as two distinct fractions, A and B, on DEAE-cellulose columns. 6. The guanine-deaminase activity of the light-mitochondrial fraction of whole brain was fully exposed and solubilized by treatment with Triton X-100, and partially purified. 7. Tested in the form of crude preparations, the inhibitor from kidney did not act on the brain and liver supernatant enzymes and the inhibitor from cerebellum did not act on kidney enzyme, but the inhibitor from liver acted on both brain and kidney enzyme. 8. The inhibitor of guanine deaminase was purified from the heavy mitochondria of whole brain and liver and the 5000g residue of cerebellum, isolated from iso-osmotic homogenates. The inhibitor appeared to be protein in nature and was heat-labile. The inhibition of the enzyme was non-competitive. 9. Kinetic, immunochemical and electrophoretic studies with the preparations purified from brain revealed that the enzyme from light mitochondria was distinct from enzyme B from the supernatant. A distinction between the two forms of supernatant enzyme was less certain. 10. Guanine deaminase isolated from light mitochondria of brain did not react with 8-azaguanine or with the inhibitor isolated from heavy mitochondria.  相似文献   

13.
Guanine deaminase, a key enzyme in the nucleotide metabolism, catalyzes the hydrolytic deamination of guanine into xanthine. The crystal structure of the 156-residue guanine deaminase from Bacillus subtilis has been solved at 1.17-A resolution. Unexpectedly, the C-terminal segment is swapped to form an intersubunit active site and an intertwined dimer with an extensive interface of 3900 A(2) per monomer. The essential zinc ion is ligated by a water molecule together with His(53), Cys(83), and Cys(86). A transition state analog was modeled into the active site cavity based on the tightly bound imidazole and water molecules, allowing identification of the conserved deamination mechanism and specific substrate recognition by Asp(114) and Tyr(156'). The closed conformation also reveals that substrate binding seals the active site entrance, which is controlled by the C-terminal tail. Therefore, the domain swapping has not only facilitated the dimerization but has also ensured specific substrate recognition. Finally, a detailed structural comparison of the cytidine deaminase superfamily illustrates the functional versatility of the divergent active sites found in the guanine, cytosine, and cytidine deaminases and suggests putative specific substrate-interacting residues for other members such as dCMP deaminases.  相似文献   

14.
Guanine deaminase (GDA; cypin) is an important metalloenzyme that processes the first step in purine catabolism, converting guanine to xanthine by hydrolytic deamination. In higher eukaryotes, GDA also plays an important role in the development of neuronal morphology by regulating dendritic arborization. In addition to its role in the maturing brain, GDA is thought to be involved in proper liver function since increased levels of GDA activity have been correlated with liver disease and transplant rejection. Although mammalian GDA is an attractive and potential drug target for treatment of both liver diseases and cognitive disorders, prospective novel inhibitors and/or activators of this enzyme have not been actively pursued. In this study, we employed the combination of protein structure analysis and experimental kinetic studies to seek novel potential ligands for human guanine deaminase. Using virtual screening and biochemical analysis, we identified common small molecule compounds that demonstrate a higher binding affinity to GDA than does guanine. In vitro analysis demonstrates that these compounds inhibit guanine deamination, and more surprisingly, affect GDA (cypin)-mediated microtubule assembly. The results in this study provide evidence that an in silico drug discovery strategy coupled with in vitro validation assays can be successfully implemented to discover compounds that may possess therapeutic value for the treatment of diseases and disorders where GDA activity is abnormal.  相似文献   

15.
Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a K(m) of 15 microM with guanine and a k(cat) of 3.2 s(-1). The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3' from an open reading frame which shows homology to a bacterial purine base permease.  相似文献   

16.
17.
Plasma guanine deaminase (guanase; GD) is well established as an indicator of hepatocellular disease, recently being applied in the detection of hepatitis C in donor blood and in the diagnosis of hepatoma. No totally efficient, simple method for the estimation of plasma GD activity is routine since both guanine and 8-azaguanine, the substrates of the enzyme, are scarcely soluble in water. This difficulty in preparing stable substrates of sufficient concentration has resulted in methods that are both troublesome and inaccurate. Here we describe the development of new colorimetric and high-performance liquid chromatography (HPLC) methods utilizing guanosine as a "prosubstrate." After an initial breakdown of the guanosine to guanine using purine nucleoside phosphorylase, the ammonia formed as a result of the breakdown of the guanine by GD was estimated colorimetrically by the Berthelot reaction. As an alternative or a complementary assay, the xanthine also formed was measured using an isocratic HPLC method. These methods are suitable for routine assays for measuring plasma GD over a wide range of activities.  相似文献   

18.
1. Guanine deaminase activities in homogenates and supernatant fractions of liver and brain of rat and mouse were elevated by administration of guanine to the animals. The maximum induction in mouse tissues occurred within 24h and in rat tissues within 48h. 2. Mitochondria of rat (but not mouse) liver and brain contain an inhibitor of supernatant guanine deaminase, and this was also increased by guanine treatment. 3. Administration of ethionine, cycloheximide or actinomycin D prevented the guanine-dependent increase in deaminase activity and also the increase in mitochondrial inhibitory activity; chloramphenicol suppressed only the latter.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号