首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Neutrophils migrate through endothelium using an ordered sequence of adhesive interactions and activating signals. To investigate the consequences of disruption of this sequence, we characterized adhesion and migration of neutrophils perfused over HUVEC that had been treated with TNF-alpha for 4 h and evaluated changes caused by exogenously added chemotactic agents. When HUVEC were treated with 2 U/ml TNF, flowing neutrophils adhered, with the majority rolling and relatively few migrating through the monolayer. If fMLP, IL-8, zymosan-activated plasma (a source of activated complement factor C5a), epithelial cell-derived neutrophil-activating peptide (ENA-78), or growth-regulating oncogene, GRO-alpha, was perfused over these neutrophils, they stopped rolling and rapidly migrated over the monolayer, but did not penetrate it. When HUVEC were treated with 100 U/ml TNF, the majority of adherent neutrophils transmigrated. If neutrophils were treated with fMLP, IL-8, C5a, ENA-78, or GRO-alpha just before perfusion over this HUVEC, transmigration, but not adhesion, was abolished. However, when platelet-activating factor was used to activate neutrophils, migration through HUVEC treated with 100 U/ml TNF was not impaired, and migration through HUVEC treated with 2 U/ml TNF was actually increased. Transmigration required ligation of CXC chemokine receptor-2 on neutrophils, and differential desensitization of this receptor (e.g., by fMLP but not platelet-activating factor) may explain the pattern of disruption of migration. Thus, transmigration may require presentation of the correct activators in the correct sequence, and inappropriate activation (e.g., by systemic activators) could cause pathological accumulation of neutrophils in the vessel lumen.  相似文献   

2.
Neutrophils must follow both endogenous and bacterial chemoattractant signals out of the vasculature and through the interstitium to arrive at a site of infection. By necessity, in the setting of multiple chemoattractants, the neutrophils must prioritize, favoring end target chemoattractants (e.g., fMLP and C5a) emanating from the site of infection over intermediary endogenous chemoattractants (e.g., IL-8 and LTB4) encountered en route to sites of infection. In this study, we propose a hierarchical model of two signaling pathways mediating the decision-making process of the neutrophils, which allows end target molecules to dominate over intermediary chemoattractants. In an under agarose assay, neutrophils predominantly migrated toward end target chemoattractants via p38 MAPK, whereas intermediary chemoattractant-induced migration was phosphoinositide 3-kinase (PI3K)/Akt dependent. When faced with competing gradients of end target and intermediary chemoattractants, Akt activation was significantly reduced within neutrophils, and the cells migrated preferentially toward end target chemoattractants even at 1/1,000th that of intermediary chemoattractants. End target molecules did not require chemotactic properties, since the p38 MAPK activator, LPS, also inhibited Akt and prevented migration to intermediary chemoattractants. p38 MAPK inhibitors not only reversed this hierarchy, such that neutrophils migrated preferentially toward intermediary chemoattractants, but also allowed neutrophils to be drawn out of a local end target chemoattractant environment and toward intermediary chemoattractants unexpectedly in an exaggerated (two- to fivefold) fashion. This was entirely related to significantly increased magnitude and duration of Akt activation. Finally, end target chemoattractant responses were predominantly Mac-1 dependent, whereas nondominant chemoattractants used primarily LFA-1. These data provide support for a two pathway signaling model wherein the end target chemoattractants activate p38 MAPK, which inhibits intermediary chemoattractant-induced PI3K/Akt pathway, establishing an intracellular signaling hierarchy.  相似文献   

3.
Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons.  相似文献   

4.
5.
Activation of the p21-activated protein kinases (Paks) was compared in neutrophils stimulated with a wide variety of agonists that bind to receptors coupled to heterotrimeric G proteins. Neutrophils stimulated with sulfatide, a ligand for the L-selectin receptor, or the chemoattractant fMet-Leu-Phe (fMLP), platelet-activating factor, leukotriene B4, interleukin-8, or the chemokine RANTES exhibited a rapid and transient activation of the 63- and 69-kDa Paks. These kinases exhibited maximal activation with each of these agonists within 15 s followed by significant inactivation at 3 min. In contrast, neutrophils treated with the chemoattractant and anaphylatoxin C5a exhibited a prolonged activation (>15 min) of these Paks even though the receptor for this ligand may activate the same overall population of complex G proteins as the fMLP receptor. Addition of fMLP to neutrophils already stimulated with C5a resulted in the inactivation of the 63- and 69-kDa Paks. Optimal activation of Paks could be observed at concentrations of these agonists that elicited only shape changes and chemotaxis in neutrophils. While all of the agonists listed above triggered quantitatively similar activation of the 63- and 69-kDa Paks, fMLP was far superior to the other stimuli in triggering activation of the c-Jun N-terminal kinase (JNK) and the p38 mitogen-activated protein kinase (MAPK). These data indicate that separate signals are required for activation and inactivation of Paks and that, in contrast to other cell types, activated Pak does not trigger activation of JNK or p38-MAPK in neutrophils. These results are consistent with the recent hypothesis that G-protein-coupled receptors may initiate signals independent of those transmitted by the α and βγ subunits of complex G proteins.  相似文献   

6.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

7.
The aim of this study was to characterize the mediators released by mast cells responsible for IL-8-induced neutrophil migration. It was observed that IL-8 induces a dose-dependent neutrophil migration into peritoneal cavity of rats, but not into air-pouch cavity in which resident mast cells are not present. The transference of peritoneal mast cells to the air-pouch renders this cavity responsive to IL-8. The neutrophil migration induced by IL-8 into the peritoneal cavity was not observed when the peritoneal-resident mast cells were depleted by compound 48/80 or distilled water treatment. Confirming the importance of mast cells, IL-8-stimulated mast cells supernatant induced significant neutrophil migration when injected into peritoneal and air-pouch cavities. The IL-8-induced neutrophil migration was observed not to be dependent on LTB(4), prostaglandins or TNF-alpha, since MK886, indomethacin or thalidomide were unable to block the IL-8-induced neutrophil accumulation 'in vivo' or the release of neutrophil chemotactic factor "in vitro" by IL-8-stimulated mast cells. However, dexamethasone, an inhibitor of the synthesis of pro-inflammatory cytokines, blocked the neutrophil migration induced by IL-8 "in vivo" and also inhibited the release of the neutrophil chemotactic factor by IL-8-stimulated mast cells. Moreover, the incubation of IL-8-stimulated mast cells supernatant with antibody against cytokine-induced neutrophil chemoattractant 1 (CINC-1), but not against TNF-alpha or IL-1beta, inhibited its neutrophil chemotactic activity. Furthermore, we found a significant amount of CINC-1 in this supernatant. In conclusion, we demonstrated that the neutrophil migration induced by IL-8 is dependent on CINC-1 release from mast cells.  相似文献   

8.
目的探讨伏立康唑联合小剂量糖皮质激素对儿童隐球菌性脑膜炎的疗效。方法分析2例采用伏立康唑联合小剂量糖皮质激素治疗的儿童隐球菌性脑膜炎病例并进行相关文献复习。结果患儿经治疗后头痛等症状消失,颅内压逐渐下降至正常水平,脑脊液蛋白水平明显下降并稳定。结论伏立康唑联合小剂量糖皮质激素能迅速有效地控制临床症状,使用方便、副作用小,可作为儿童隐球菌性脑膜炎诱导治疗的一种选择。  相似文献   

9.
Radhika V  Naik NR  Advani SH  Bhisey AN 《Cytometry》2000,42(6):379-386
Chronic myeloid leukemia (CML), a hematopoietic stem cell disorder, is characterized by the presence of Philadelphia chromosome (Ph1). Earlier studies have shown that various functions, such as chemotaxis, fluid phase pinocytosis, phagocytosis, and degranulation in response to chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP), were defective in polymorphonuclear leukocytes (PMNL) from CML patients. These functions depend on actin microfilaments (MF). Further studies showed that fMLP-induced actin polymerization was lower in CML PMNL. To see if this defect is specific to stimulation by fMLP alone or is a global phenomenon involving other chemoattractant receptors, chemotaxis and actin polymerization were studied in response to fMLP, an analog of fMLP, formyl-methionine-1 aminocyclooctane 1 carboxylic acid-phenyalanine-O-methionine (FACC8), platelet-activating factor (PAF), and leukotriene B4 (LTB4). These compounds bind to different chemoattractant receptors. Chemotaxis and actin polymerization in response to all four chemoattractants were significantly lower in CML PMNL compared with PMNL from normal subjects and were differentially affected for the different chemoattractants. These results suggest a global phenomenon involving all four chemoattractant-stimulated pathways. This lower amount of F-actin may be responsible for the defective chemotaxis seen in these cells.  相似文献   

10.
Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression.  相似文献   

11.
The superoxide-producing phagocyte NADPH oxidase consists of a membrane-bound flavocytochrome b(558), the cytosol factors p47(phox), p67(phox), p40(phox), and the small GTPase Rac2, which translocate to the membrane to assemble the active complex following neutrophil activation. Interleukin-8 (IL-8) does not activate NADPH oxidase, but potentiates the oxidative burst induced by stimuli such as formyl-methionyl-leucyl-phenylalanine (fMLP) via a priming mechanism. The effect of IL-8 on the components of NADPH oxidase during the priming process has never been investigated in human neutrophils. Here we showed that within 3 min, IL-8 treatment enhanced the Btk- and ERK1/2-dependent phosphorylation of p47(phox), as well as the recruitment of flavocytochrome b(558), p47(phox), and Rac2 into cholesterol-enriched detergent-resistant microdomains (or lipid rafts). Conversely, IL-8 treatment lasting 15 min failed to recruit flavocytochrome b(558), p47(phox), or Rac2, but did enhance the Btk- and p38 MAPK-dependent phosphorylation and the translocation of p67(phox) into detergent-resistant microdomains. Moreover, methyl-beta-cyclodextrin, which disrupts lipid rafts, inhibited IL-8-induced priming in response to fMLP. Our findings indicate that IL-8-induced priming of the oxidative burst in response to fMLP involves a sequential assembly of the NADPH oxidase components in the lipid rafts of neutrophils.  相似文献   

12.
We studied the function of plasma membrane microdomains defined by the proteins flotillin 1 and flotillin 2 in uropod formation and neutrophil chemotaxis. Flotillins become concentrated in the uropod of neutrophils after exposure to chemoattractants such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that mice lacking flotillin 1 do not have flotillin microdomains, and that recruitment of neutrophils toward fMLP in vivo is reduced in these mice. Ex vivo, migration of neutrophils through a resistive matrix is reduced in the absence of flotillin microdomains, but the machinery required for sensing chemoattractant functions normally. Flotillin microdomains specifically associate with myosin IIa, and spectrins. Both uropod formation and myosin IIa activity are compromised in flotillin 1 knockout neutrophils. We conclude that the association between flotillin microdomains and cortical cytoskeleton has important functions during neutrophil migration, in uropod formation, and in the regulation of myosin IIa.  相似文献   

13.
In this study, we examined the mechanism by which CD38 cleavage is regulated through the mitogen-activated protein (MAP) kinases after stimulation by fMLP and interleukin-8 (IL-8) in neutrophils. Both fMLP and IL-8 increased chemotaxis and decreased CD38 protein in neutrophils, but did not change CD38 mRNA levels. Both fMLP and IL-8 increased CD38 in supernatants, which was inhibitable with PMSF. fMLP stimulation resulted in phosphorylation of p38 MAP kinase and p42/44 MAP kinase (ERK). SB20358, a p38 MAP kinase inhibitor, down-regulated neutrophil chemotaxis. Conversely, PD98059, an ERK inhibitor, did not influence chemotaxis to either agonist. The addition of SB20358 blocked the decrease of CD38 on neutrophils and the increase in supernatants induced by fMLP or IL-8, whereas PD98059 did not. These findings suggest that CD38-mediated chemotaxis to fMLP or IL-8 is characterized by proteolytic cleavage of CD38 and signaling through p38 MAP kinase. Activation of the protease for cleavage appears to be a postreceptor event that is dependent on p38 MAP kinase signaling.  相似文献   

14.
Capsoni F  Ongari A  Colombo G  Turcatti F  Catania A 《Peptides》2007,28(10):2016-2022
Natural melanocortin peptides exert broad effects on the host and they have remarkable therapeutic potential. However, successful use of melanocortins as therapeutic agents depends on the design of molecules that have more stable pharmacological profiles. The synthetic peptide (CKPV)(2), based on the C-terminal sequence of alpha-melanocyte stimulating hormone (alpha-MSH), has anti-tumor necrosis factor-alpha (TNF-alpha) effects in vitro and in vivo and is a promising candidate to treat inflammation. Because neutrophil activity is a major target for anti-inflammatory therapies, we determined whether (CKPV)(2) modulates human neutrophil functions in vitro. Incubation of freshly-separated human neutrophils with 10(-12)-10(-6)M (CKPV)(2) significantly inhibited activities relevant to the inflammatory reaction. Neutrophil migration toward the two chemoattractants interleukin 8 (IL-8) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) was significantly inhibited by (CKPV)(2). (CKPV)(2) also inhibited reactive oxygen intermediate (ROI) production induced by phorbol 12-myristate 13-acetate (PMA), but not that induced by fMLP. Because these effects of (CKPV)(2) were abolished by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine (ddAdo), they appear to be cAMP-dependent. Finally, the peptide reduced lipopolysaccharide (LPS)-stimulated expression of TNF-alpha, interleukin-1beta (IL-1beta), interleukin-8 (IL-8), and intercellular adhesion molecule 1 (ICAM-1), as well as TNF-alpha protein release in cell supernatants. The data indicate that (CKPV)(2) modulates broad cAMP-dependent, anti-inflammatory pathways in human neutrophils.  相似文献   

15.
Acute ethanol (EtOH) intoxication has been identified as a risk factor for infectious complications in trauma and burn victims. However, the mechanism of this immune dysfunction has yet to be elucidated. The monocyte/macrophage production of cytokines, in particular IL-8 and TNF-alpha, is critical in the regulation of the acute inflammatory response to infectious challenge. IL-8 is a potent chemoattractant and activator of neutrophils. TNF-alpha, a proinflammatory cytokine, initiates expression of endothelial cell surface adhesion molecules and neutrophil migration. p38, a member of the mitogen-activated protein kinases, plays an important role in mediating intracellular signal transduction in endotoxin-induced inflammatory responses. We examined the effects of LPS and ethanol on p38 activation and the corresponding IL-8 and TNF-alpha production in human mononuclear cells. LPS-induced IL-8 and TNF-alpha production was inhibited in a similar pattern by pretreatment with either EtOH or SB202190 (1 microM), a specific inhibitor of p38 kinase. Western blot analysis, using a dual phospho-specific p38 mitogen-activated protein kinase Ab, demonstrated that EtOH pretreatment inhibited LPS-induced p38 activation. These results demonstrate that alcohol suppresses the normal host immune inflammatory response to LPS. This dysregulation appears to be mediated in part via inhibition of p38 activation. Inhibition of IL-8 and TNF-alpha production by acute EtOH intoxication may inhibit inflammatory focused neutrophil migration and activation and may be a mechanism explaining the increased risk of trauma- and burn-related infections.  相似文献   

16.
Eosinophils, through their ability to generate an array of potent mediators, are thought to be the major effector cells in a number of conditions, including parasitic infection, asthma, and other allergic diseases. The mechanism(s) by which eosinophils, as opposed to neutrophils, accumulate at inflammatory sites is unknown. One possible mechanism would be an eosinophil-specific pathway of adhesion to vascular endothelium. In this study we have demonstrated that human eosinophils, but not neutrophils, constitutively express alpha 4 beta 1 (CD49d/CD29). Expression was not increased on low density eosinophils or normal density cells stimulated with platelet-activating factor. Eosinophils, but not neutrophils, specifically adhered to COS cells transfected with vascular adhesion molecule-1 in a alpha 4 beta 1-dependent manner. Eosinophil, but not neutrophil, adhesion to IL-1 stimulated human umbilical vascular endothelial cells was significantly inhibited by alpha 4 beta 1 mAb at both 5 h (p less than 0.05) and 20 h (p less than 0.001). Inhibition of both resting and platelet-activating factor-(10(-7) M) stimulated eosinophil adhesion was observed. We conclude that the alpha 4 beta 1/vascular adhesion molecule-1 adhesion pathway may be involved in specific eosinophil, as opposed to neutrophil, migration into sites of eosinophilic inflammation.  相似文献   

17.
Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation.  相似文献   

18.
Proton nuclear magnetic resonance spectroscopy is a nondestructive technique that identifies chemicals in solution and in living cells. It has been used in cryptococcal research to identify the primary structure of capsular glucuronoxylomannans, link cellular apoptosis susceptibility (CAS) genes to positioning of residues on the mannose backbone of glucuronoxylomannan, and verify that the cryptococcal virulence determinant, phospholipase B, is elaborated in vivo. Promising clinical applications include speciation (Cryptococcus neoformans and Cryptococcus gattii), with preliminary evidence that varieties neoformans and grubii can also be distinguished, non-invasive diagnosis of cerebral cryptococcomas, and, in cases of meningitis, monitoring therapeutic response by analysis of cerebrospinal fluid.  相似文献   

19.
The role of neutrophil chemoattractant receptors in neutrophil stimulation in vitro is well established, however, the precise mechanisms underlying local neutrophil accumulation at inflammatory sites in vivo have not been defined. A fundamental question that remains open is whether chemoattractants act on the endothelial cell or the neutrophil to initiate the process of neutrophil migration in vivo. To address this question we have investigated whether neutrophil accumulation in vivo can occur if chemoattractant receptor occupancy is uncoupled from neutrophil stimulation. For this purpose we have used pertussis toxin (PT) as the pharmacologic tool. We have investigated the effect of in vitro pretreatment of rabbit neutrophils with PT on their responses in vitro and on their accumulation in vivo. Pretreatment of rabbit neutrophils with PT inhibited FMLP- and C5a-, but not PMA- induced increases in CD18 expression, neutrophil adherence, and degranulation in vitro. This pretreatment procedure with PT inhibited the accumulation of radiolabeled neutrophils in vivo in response to intradermally injected FMLP, C5a, C5a des Arg, leukotriene B4, IL-8, and zymosan in rabbit skin. Further, in contrast to the in vitro results, PT inhibited the PMA-induced 111In-neutrophil accumulation in vivo. Interestingly, pretreatment of neutrophils with PT also inhibited accumulation in response to intradermally injected IL-1, despite the reports that IL-1 lacks neutrophil chemoattractant activity in vitro. Although the experimental techniques used cannot distinguish the different stages of neutrophil migration involved, these results suggest that the accumulation of neutrophils induced by local extravascular chemoattractants in vivo depends on a pertussis toxin-sensitive receptor operated event on the neutrophil itself. Further, PMA and IL-1 may release secondary chemoattractants in vivo.  相似文献   

20.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway regulates a wide range of inflammatory responses in many different cells. Inhibition of p38 MAPK before exposing a cell to stress stimuli has profound anti-inflammatory effects, but little is known about the effects of p38 MAPK inhibition on ongoing inflammatory responses. LPS-induced activation of p38 MAPK in human neutrophils was inhibited by poststimulation exposure to a p38 MAPK inhibitor (M39). Release of TNF-alpha, macrophage-inflammatory protein (MIP)-2 (MIP-1beta), and IL-8 by LPS-stimulated neutrophils was also reduced by poststimulation p38 MAPK inhibition. In contrast, release of monocyte chemoattractant protein-1 was found to be p38 MAPK independent. Ongoing chemotaxis toward IL-8 was eliminated by p38 MAPK inhibition, although the rate of nondirectional movement was not reduced. A murine model of acute LPS-induced lung inflammation was used to study the effect of p38 MAPK inhibition in ongoing pulmonary inflammation. Initial pulmonary cell responses occur within 4 h of stimulation in this model, so M39 was administered 4 h or 12 h after exposure of the animals to aerosolized LPS to avoid inhibition of cytokine release. Quantities of TNF-alpha, MIP-2, KC, or monocyte chemoattractant protein-1 recovered from bronchial alveolar lavage or serum were not changed. Recruitment of neutrophils, but not other leukocytes, to the airspaces was significantly reduced. Together, these data demonstrate the selective reduction of LPS-induced neutrophil recruitment to the airspaces, independent of suppression of other inflammatory responses. These findings support the feasibility of p38 MAPK inhibition as a selective intervention to reduce neutrophilic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号