首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Treatment of mouse spleen cells with a rabbit anti-mouse brain (RAMB) antiserum markedly suppressed antibody-dependent cell-mediated cytotoxicity (ADCC) on trinitrophenyl-coupled sheep erythrocyte targets. This inhibitory activity of RAMB antiserum was complement independent, absorbable with mouse brain tissue, and appeared to be separable from the anti-Thy-1 activity of this serum. Absorption studies indicated that various T- and B-lymphocyte cell lines as well as macrophage-like cell lines are not able to absorb the inhibitory activity of RAMB antiserum. In contrast, thymocytes and spleen cells, as well as the neural cell line, PC12, a chromocytoma derived from rat adrenal medulla, were capable of absorbing the inhibitory activity to some extent, suggesting that antigens characteristic for ADCC effector cells can be found on these cell populations.  相似文献   

2.
3.
Peripheral blood mononuclear cells (PBMC) from humans without antibodies to dengue 2 virus lysed dengue 2 virus-infected Raji cells to a significantly greater degree than uninfected Raji cells. The addition of mouse anti-dengue antibody increased the lysis of dengue-infected Raji cells by PBMC. Dengue 2 immune human sera also increased lysis of dengue-infected Raji cells by PBMC. These results indicate that both PBMC-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) can cause significant lysis of dengue-infected Raji cells. The lysis of infected Raji cells in the ADCC assay correlated with the dilution of dengue-specific antibody which was added, indicating the dengue virus specificity of the lysis of dengue virus-infected Raji cells. Alpha interferon (IFN alpha) was detected in the culture supernatant of PBMC and dengue-infected Raji cells. However, enhanced lysis of dengue-infected Raji cells by PBMC may not be due to the IFN produced, because neutralization of all IFN activity with anti-IFN alpha antibody did not decrease the lysis of dengue-infected cells, and effector cells pretreated with exogenous IFN alpha also lysed dengue-infected cells to a greater degree than uninfected cells. The effector cells responsible for lysis of dengue virus-infected Raji cells in the natural killer and ADCC assays were analyzed. Nonadherent PBMC caused more lysis than did adherent cells. Characterization of nonadherent cells with monoclonal antibodies showed that the predominant responsible effector cells were contained in OKM1+ and OKT3- fraction in the natural killer and ADCC assays.  相似文献   

4.
5.
The effects of ouabain, a known inhibitor of lymphoproliferation, were studied in relation to the cytotoxic effector function of human peripheral blood mononuclear leukocytes (MNL) against chicken red blood cell (CRC) targets. MNL effectors lysed 51Cr-labeled CRC targets in the presence of PHA (mitogen-induced cellular cytotoxicity—MICC) or rabbit anti-CRC antibody (antibody-dependent cellular cytotoxicity—ADCC) in the absence of ouabain. The addition of ouabain to the cytotoxic reaction caused profound diminution of MICC with greater than 90% suppression of killing at ouabain concentrations of 5 × 10?4M; ADCC was much more resistant to the effects of ouabain with only 60 to 70% inhibition of killing at similar ouabain concentrations (P < 0.01). Similar ouabain inhibition of MICC occurred whether the effector cell populations were unseparated MNL, depleted of monocytes, enriched for T cells, or depleted of T cells, suggesting a generalized activity by ouabain against all effector cells active in MICC. Ouabain inhibition of MICC could be overcome by increasing PHA concentrations, indicating that ouabain inhibition was not due to irreversible toxic effects on effector cells. Increasing the concentration of anti-CRC antibody resulted in increased killing in this ADCC system and, paradoxically, ADCC cultures with the highest antibody concentrations were more completely inhibited by ouabain. This enhanced inhibitory effect of ouabain on ADCC cultures with the highest antibody concentrations was not observed when the effector cell population was first depleted of phagocytic cells, suggesting a preferential inhibitory action by ouabain against monocyte effectors in ADCC. Thus, the differential inhibitory effects of ouabain on MICC and ADCC against CRC targets may be in part explained by the differing ouabain sensitivities of the various effector cell subpopulations involved in these cell-mediated cytotoxic events.  相似文献   

6.
7.
8.
Lymphocytes that have been purified by Ficoll-Hypaque centrifugation lose antibody-dependent and natural cytotoxic activities upon culture in tissue culture medium supplemented with human plasma. However, stimulation of peripheral lymphocytes in the mixed leukocyte culture (MLC) appears to enhance killer (K) and natural killer (NK) activities in addition to generating cytotoxic T ymphocytes. Enhancement of NK and antibody dependent activities appears to correlate with cell division as measured by 3H-thymidine uptake. However, elimination of dividing cells in the MLC by addition of 5-bromodeoxyuridine has no effect on NK and K cells activities. Since this treatment abolishes cell-mediated lympholysis mediated by cytotoxic T lymphocytes, it is a useful probe for determining the relative activities of NK, K, and cytotoxic T lymphocyte effector cells after lymphocyte stimulation.  相似文献   

9.
The in vitro effect of histamine and its antagonists, cimetidine and clemastine fumarate, on natural killer (NK) and antibody-dependent cellular Cytotoxicity (ADCC) activities of human lymphocytes was investigated. The histamine 1 (H1) antagonist, clemastine fumarate, and the histamine 2 (H2) antagonist, cimetidine, but not histamine alone, inhibited the NK and ADCC activities of lymphocytes when added directly to the mixture of effector and target cells in a 51Cr-release assay. This inhibition was proportional to the concentration of drugs added and was observed at various effector to target ratios against several targets. H1 and H2 antagonists also inhibited NK activities of T cells as well as Percoll-separated, NK-enriched effector cells. The inhibition was significantly reversed by histamine. In target binding assays, clemastine fumarate and cimetidine also decreased the target binding capacity of effector lymphocytes. Further, PBL precultured with histamine (10?3–10?4M) for 24 hr showed a significant decrease in their NK and ADCC activities. In coculture experiments, PBL precultured with histamine suppressed the NK activity of normal autologous effector lymphocytes. PBL precultured with histamine showed an increased number of OKT8+ cells, as estimated using monoclonal antibodies. The suppression of Cytotoxicity was not due to either direct toxicity, steric hindrance, crowding, or cell death, but by functionally viable suppressor cells. An immunoregulatory role for histamine in NK and ADCC reactions is proposed.  相似文献   

10.
Serum-free culture supernatants of unstimulated normal human peripheral blood mononuclear cells contain soluble suppressor factor(s) (SSF) that significantly inhibit natural (NK) and antibody-dependent cellular cytotoxic (ADCC) activities of allogenic lymphocytes against a variety of target cells. Lymphocytes precultured with increasing concentrations of SSF showed a dose-dependent suppressive effect on these cytotoxic functions that was optimal at a concentration of 20% volume/volume. Adherent cells were not required for the production of SSF. Suppression was evident even at higher effector: target cell ratios and the inhibition was not reversed by washing lymphocytes. SSF was not itself cytotoxic, was stable at 56 degrees C, and its suppressive effect was maximal after 72 hr of incubation with effector lymphocytes. Initial estimate of the molecular weight of SSF by ultra-filtration was less than 20,000 daltons. Gel filtration of SSF on Sephacryl S-200 resulted in the elution of two peaks of activity; one in the region between markers of 13,700 and 25,000 daltons, and the other less than 13,700 daltons. Both fractions demonstrated significant suppressive activity on NK and ADCC functions of allogenic lymphocytes. SSF inhibition of NK activity could be partially reversed by incubating lymphocytes for 1 hr with human leukocyte interferon (IF) and almost completely reversed after 24 hr of IF treatment. A few selected monosaccharides (alpha-methyl-D-mannoside, L-fucose and L-rhamnose) showed a dose-dependent blocking effect on SSF activity, which suggests that SSF may act via receptor sites recognized by these sugars. As demonstrated for other lymphocyte functions, NK and ADCC activities may also be modulated by SSF elaborated by normal PBL.  相似文献   

11.
Antisera produced in rats by immunization with alloimmune murine C57Bl/6 anti-P815 splenic lymphocytes or purified T cells activated in vitro by coculture with phytohemagglutinincoated L-929 cells were found to inhibit the in vitro cytolytic action of in vivo and in vitro alloimmune C57Bl/6 anti-P815 cytotoxic T cells in a 4-hr chromium-51 release assay. The rat anti-murine-activated lymphocyte (anti-MAL) or antiactivated T-cell (anti-ATC) serum inhibited lysis in the absence of exogenously added complement activity and were not directly cytotoxic to CTL. Absorption of anti-MAL with target cells P815, L-929, EL-4, and normal C57Bl/6 lymphocytes removed a limited amount of the CTL-inhibitory activity. In contrast, lectin-activated alloimmune lymphocytes fully absorbed the inhibitory activity indicating these antisera preferentially recognize unique antigenic determinants associated with the activated CTL cell surface. The anti-ATC was found to block alloimmune lysis by CTL from several inbred mouse strains suggesting these antisera recognized antigenic determinants of a common lytic mechanism. A kinetic analysis of the inhibitory activity of the anti-MAL on the CTL reaction scheme revealed this antiserum inhibited lysis at a post-Ca2+-dependent step, presumably during the target cell lytic phase. This result suggests the rat antiserum can neutralize the CTL lytic mechanism.  相似文献   

12.
A population of lymph node cells that lack the usual T, B, or K cell markers was found to inhibit autologous spleen cells from mediating antibody-dependent cellular cytotoxicity (ADCC) to antibody-coated chicken erythrocytes. Inhibitor cells were not susceptible to treatment with anti-Thy 1.2 or anti-Ig and C; they did not adhere to Sephadex G-10, to nylon wool, or to monolayers of sheep erythrocytes (E) or erythrocytes plus 7S antibody (EA). After a brief (4-min) exposure to 45 degrees C, the ability to inhibit was lost whereas other cellular responses remained intact. ADCC mediated by nonadherent splenic effector cells (presumptive K cells) was highly susceptible to inhibition. Possible mechanisms for and implications of lymphocyte-mediated inhibition of ADCC are discussed.  相似文献   

13.
The recent interest in natural killer (NK) cells in immunosurveillance and the ability of infection with certain organisms to modulate NK activity led us to examine the influence of Toxoplasma gondii infection on mouse NK cells. Infection of BALB/c mice with 5 × 103 virulent Toxoplasma intraperitoneally (ip) resulted in significantly enhanced NK activity in peritoneal exudate cells (PC) and in spleen cells (SC). Intravenous (iv) and subcutaneous (sc) challenge of BALB/c mice with Toxoplasma also resulted in enhanced natural killer (NK) activity in PC and SC. In BALB/c mice, as well as in other strains (A/J, C57BL/6, C3H/HeJ, CeH/HeN, [A/J × C3H]F1), peak augmentation of PC and SC NK activity was observed 3 days following ip Toxoplasma challenge. Administration of silica to mice abolished Toxoplasma-induced NK cytotoxicity. BALB/c mice chronically infected with Toxoplasma had significantly higher endogenous NK activity than did controls in PC but not in SC. Chronically infected BALB/c mice boosted with virulent Toxoplasma ip exhibited significantly enhanced NK activity in PC but not in SC. Thus, acute and chronic infection with Toxoplasma modulates NK activity in addition to macrophage activation and thereby provides a system that should facilitate study of the relative contribution of NK cells and activated macrophages in resistance to tumor growth and spread.  相似文献   

14.
15.
We recently observed that certain tumor cell lines in tissue culture produced prostaglandins and that increased production occurred when the tumor cells were exposed to lymphocytes. The present experiments tested the effect of prostaglandins E1 and E2 on natural and antibody-dependent lymphocyte cytotoxicity against the same target cells in order to determine whether the production of prostaglandins by the tumor cells might influence the efficacy of the cellular immune response. Target cell lines T24 and HCV29 were labeled with 51Chromium and incubated at 37 °C for various times with lymphocytes prepared from venous blood of normal donors. Antiserum to T24 and varying concentrations of prostaglandin E1 or E2 were added to the samples prior to incubation. In some experiments, lymphocytes or labeled target cells were preincubated with prostaglandins and then washed prior to their addition to the assay tubes. Cytotoxicity was determined by measuring the release of 51Chromium from the target cells after incubation. Both prostaglandins E1 and E2 inhibited natural and antibody-dependent lymphocyte cytotoxicity against the target cells. The effect appeared to represent a direct one on lymphocytes, and it was amplified by the presence of theophylline in the medium. Inhibition could be effected early on in lymphocyte/target cell interaction, and only a short exposure of lymphocytes to prostaglandins was required for the effect to be manifested. It thus appears that the production of prostaglandins by tumor cells may constitute a means by which the tumor cells subvert the effect of a cellular immune response that is directed against them.  相似文献   

16.
Protein A, a cell wall constituent of several strains of Staphylococcus aureus, binds strongly to the Fc portion of immunoglobulins. This investigation demonstrated that such binding can inhibit antibody-dependent cellular cytotoxicity (ADCC). The degree to which ADCC was inhibited depended upon the relative concentrations of protein A and anti-target cell antiserum. Protein A also inhibited the formation of rosettes between antibody-coated sheep red blood cells and lymphoid cells with Fc receptors. We, therefore, conclude that protein A inhibits ADCC by preventing the binding of antibody-coated target cells to Fc receptors on cytotoxic effector cells.  相似文献   

17.
18.
The ability of rat monoclonal antibodies to promote antibody-dependent cell-mediated cytotoxicity with human effector cells was tested by using a variety of antibodies against different human and mouse leukocyte antigens. It was found that only IgG2b antibodies were effective. This isotype has already been shown to be efficient in fixing human complement, which suggests that among rat monoclonal antibodies, the IgG2b subclass might be a good choice for attempts at serotherapy. Further studies with other antibody-mediated effector mechanisms as well as suitable clinical trials are merited.  相似文献   

19.
Natural killing (NK) in humans, as well as in other species, has been shown to be specific for antigenic determinants present on the surfaces of a variety of tumor cells. Physical separation of NK cells from K cells, which mediate antibody-dependent cellular cytotoxicity (ADCC), has not been successful; however, there is indirect evidence suggesting that these activities are distinct. To further study the relationship between NK and K cells, competitive inhibition techniques were employed. NK cells can be blocked via two mechanisms: 1) by direct inhibition with NK-sensitive tumor cells binding to NK receptor sites present on the effector cells and 2) by steric inhibition resulting from the binding of antibody-coated cells to the FcR on the effector cells. K cells, however, lack the NK receptor site(s) but are FcR+, and can therefore be blocked only by antibody-coated cells. We therefore postulate that NK and K cells are two separate lymphoid populations. NK cells bear receptor site(s) for NK determinants and FcR, whereas K cells bear only FcR.  相似文献   

20.
Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope glycoproteins gp160, gp120, and gp41 or gag proteins p55, p40, p24, and p17) in infected lymphoblastoid cell lines as demonstrated by radioimmunoprecipitation and syncytia formation with c8166 cells. Killer cell-mediated, HIV-specific ADCC was found in sera from HIV-seropositive but not HIV-seronegative hemophiliacs. This HIV-specific response was directed against envelope glycoprotein but was completely absent against target cells expressing the HIV gag proteins. The ADCC directed against gp160 was present at serum dilutions up to 1/316,000. There was no correlation between serum ADCC titer and the stage of HIV-related illness as determined by T-helper-cell numbers. These experiments clearly implicated gp160 as the target antigen of HIV-specific ADCC activity following natural infection. Vaccines which stimulate antibodies directed against gp160, which are capable of mediating ADCC against infected cells, could be important for protection against infection by cell-associated virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号