首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ICA69 (islet cell Ag 69 kDa) is a diabetes-associated autoantigen with high expression levels in beta cells and brain. Its function is unknown, but knockout of its Caenorhabditis elegans homologue, ric-19, compromised neurotransmission. We disrupted the murine gene, ica-1, in 129-strain mice. These animals aged normally, but speed-congenic ICA69(null) nonobese diabetic (NOD) mice developed mid-life lethality, reminiscent of NOD-specific, late lethal seizures in glutamic acid decarboxylase 65-deficient mice. In contrast to wild-type and heterozygous animals, ICA69(null) NOD congenics fail to generate, even after immunization, cross-reactive T cells that recognize the dominant Tep69 epitope in ICA69, and its environmental mimicry Ag, the ABBOS epitope in BSA. This antigenic mimicry is thus driven by the endogenous self Ag, and not initiated by the environmental mimic. Insulitis, spontaneous, and adoptively transferred diabetes develop normally in ICA69(null) NOD congenics. Like glutamic acid decarboxylase 65, ICA69 is not an obligate autoantigen in diabetes. Unexpectedly, ICA69(null) NOD mice were resistant to cyclophosphamide (CY)-accelerated diabetes. Transplantation experiments with hemopoietic and islet tissue linked CY resistance to ICA69 deficiency in islets. CY-accelerated diabetes involves not only ablation of lymphoid cells, but ICA69-dependent drug toxicity in beta cells that boosts autoreactivity in the regenerating lymphoid system.  相似文献   

2.
An anergic phenotype has been observed in nonobese diabetic (NOD) mice and some autoreactive T cells from patients with type I diabetes. To better understand this phenomenon, we measured T cell proliferative responses to 10 diabetes-associated and up to 9 control Ags/peptides in 148 new diabetic children, 51 age- and MHC (DQ)-matched siblings (sibs), 31 patients with longstanding diabetes, and 40 healthy controls. Most (78-91%) patient and sib responses to glutamate decarboxylase of 65 kDa (GAD65), islet cell cytoplasmic autoantibody (ICA) 69, diabetes-associated T cell epitopes in ICA69 (Tep69), and heat shock protein (Hsp) 60 involved anergic T cells that required exogenous IL-2 to proliferate. Responses to proinsulin, IA-2 (and tetanus toxoid) required no IL-2 and generated sufficient cytokine to rescue anergic T cell responses. Most new patients (85%) had autoreactive T cells, three quarters targeting more than half of the diabetes Ags. Only 7.8% of the sibs and none of the controls had such multiple T cell autoreactivities, which thus characterize overt disease. Multiple anergic and nonanergic T cell autoreactivities were sustained during 2 yr follow-up after onset and in patients with longstanding (3-26 yr) diabetes. Activated patient T cells survived severe IL-2 deprivation, requiring 20-100 times less IL-2 than normal T cells to escape apoptosis. Diabetic T cell anergy thus persists for decades and is Ag and host specific but not related to disease course. Rescue by IL-2 from bystander T cells and high resistance to apoptosis may contribute to this persistence. These data explain some of the difficulties in the routine detection of disease-associated T cells, and they emphasize challenges for immunotherapy and islet transplantation.  相似文献   

3.
4.
The nonobese diabetic (NOD) mouse, a model of spontaneous insulin-dependent diabetes mellitus (IDDM), fails to express surface MHC class II I-Eg7 molecules due to a deletion in the E alpha gene promoter. E alpha-transgenic NOD mice express the E alpha E beta g7 dimer and fail to develop either insulitis or IDDM. A number of hypotheses have been proposed to explain the mechanisms of protection, most of which require peptide binding to I-Eg7. To define the requirements for peptide binding to I-Eg7, we first identified an I-Eg7-restricted T cell epitope corresponding to the sequence 4-13 of Mycobacterium tuberculosis 65-kDa heat shock protein (hsp). Single amino acid substitutions at individual positions revealed a motif for peptide binding to I-Eg7 characterized by two primary anchors at relative position (p) 1 and 4, and two secondary anchors at p6 and p9. This motif is present in eight of nine hsp peptides that bind to I-Eg7 with high affinity. The I-Eg7 binding motif displays a unique p4 anchor compared with the other known I-E motifs, and major differences are found between I-Eg7 and I-Ag7 binding motifs. Analysis of peptide binding to I-Eg7 and I-Ag7 molecules as well as proliferative responses of draining lymph node cells from hsp-primed NOD and E alpha-transgenic NOD mice to overlapping hsp peptides revealed that the two MHC molecules bind different peptides. Of 80 hsp peptides tested, none bind with high affinity to both MHC molecules, arguing against some of the mechanisms hypothesized to explain protection from IDDM in E alpha-transgenic NOD mice.  相似文献   

5.
Development of a small animal model for the in vivo study of human immunity and infectious disease remains an important goal, particularly for investigations of HIV vaccine development. NOD/Lt mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation readily support engraftment with high levels of human hematolymphoid cells. However, NOD/LtSz-scid mice are highly radiosensitive, have short life spans, and a small number develop functional lymphocytes with age. To overcome these limitations, we have backcrossed the null allele of the recombination-activating gene (Rag1) for 10 generations onto the NOD/LtSz strain background. Mice deficient in RAG1 activity are unable to initiate V(D)J recombination in Ig and TCR genes and lack functional T and B lymphocytes. NOD/LtSz-Rag1null mice have an increased mean life span compared with NOD/LtSz-scid mice due to a later onset of lymphoma development, are radioresistant, and lack serum Ig throughout life. NOD/LtSz-Rag1null mice were devoid of mature T or B cells. Cytotoxic assays demonstrated low NK cell activity. NOD/LtSz-Rag1null mice supported high levels of engraftment with human lymphoid cells and human hemopoietic stem cells. The engrafted human T cells were readily infected with HIV. Finally, NOD/LtSz-Rag1null recipients of adoptively transferred spleen cells from diabetic NOD/Lt+/+ mice rapidly developed diabetes. These data demonstrate the advantages of NOD/LtSz-Rag1null mice as a radiation and lymphoma-resistant model for long-term analyses of engrafted human hematolymphoid cells or diabetogenic NOD lymphoid cells.  相似文献   

6.
We explored antigenic differences between guinea pig (GP)-basic protein (BP), rat (Rt)-BP, and respective peptides from the encephalitogenic region for Lewis rats by comparing the fine specificity of T lymphocyte lines and clones selected from animals primed with these Ag. Encephalitogenic T cell lines specific for GP-BP or Rt-BP predictably recognized the corresponding 72-89 and to a lesser degree the 72-84 (S55S) amino acid sequence. T cell lines selected from rats primed with GP-S55S responded preferentially to GP-S55S compared to other peptides. A T cell line raised to Rt-S55S, however, initially recognized the S55S and S72-89 peptides but were nearly unresponsive to the intact GP-BP or Rt-BP. T cell clones selected from the Rt-S55S line at that point had two distinct patterns of response: clones that recognized both of the BP and the S55S peptides adoptively transferred delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. These clones also recognized residues 69-81 (S67) but not peptide S75-89. In contrast, T cell clones that responded only to synthetic peptides GP-S55S and Rt-S55S but not to the parent BP adoptively transferred delayed-type hypersensitivity but not disease in Lewis rats. The same clones failed to respond to either the S67 or the S75-89 sequences. These results demonstrate that the encephalitogenic Rt-S55S sequence houses a minimum of two T cell epitopes with differing specificities and functions. One epitope is immuno-dominant and resembles the encephalitogenic region of the intact BP molecule. The second non-encephalitogenic epitope is restricted to the S55S sequences and is not shared by the parent BP, the S67, or the S75-89 sequences. Both types of Rt-S55S-specific clones differ in fine specificity from encephalitogenic clones selected from GP-BP immunized rats, thus indicating that uniformity of T cell recognition of the encephalitogenic epitope is not an absolute condition for T cells to be encephalitogenic.  相似文献   

7.
Pancreatic islets of Langerhans are enveloped by peri-islet Schwann cells (pSC), which express glial fibrillary acidic protein (GFAP) and S100beta. pSC-autoreactive T- and B-cell responses arise in 3- to 4-week-old diabetes-prone non-obese diabetic (NOD) mice, followed by progressive pSC destruction before detectable beta-cell death. Humans with probable prediabetes generate similar autoreactivities, and autoantibodies in islet-cell autoantibody (lCA) -positive sera co-localize to pSC. Moreover, GFAP-specific NOD T-cell lines transferred pathogenic peri-insulitis to NOD/severe combined immunodeficient (NOD/SCID) mice, and immunotherapy with GFAP or S100beta prevented diabetes. pSC survived in rat insulin promoter Iymphocytic choriomeningitis virus (rip-LCMV) glycoprotein/CD8+ T-cell receptor(gp) double-transgenic mice with virus-induced diabetes, suggesting that pSC death is not an obligate consequence of local inflammation and beta-cell destruction. However, pSC were deleted in spontaneously diabetic NOD mice carrying the CD8+/8.3 T-cell receptor transgene, a T cell receptor commonly expressed in earliest islet infiltrates. Autoimmune targeting of pancreatic nervous system tissue elements seems to be an integral, early part of natural type 1 diabetes.  相似文献   

8.
9.
Nonobese diabetic (NOD) mice spontaneously develop insulitis and destruction of pancreatic islet beta cells similar to type 1 diabetes mellitis in humans. Insulitis also occurs in the BDC2.5 TCR transgenic line of NOD mice that express the rearranged TCR alpha- and beta-chain genes of a diabetogenic NOD CD4 T cell clone. When activated with syngeneic islet cells in culture, BDC2.5 T cells adoptively transfer disease to NOD recipients, but the identity of the islet cell Ag responsible for pathogenicity is not known. To characterize the autoantigen(s) involved, BDC2.5 T cells were used to screen a combinatorial peptide library arranged in a positional scanning format. We identified more than 100 decapeptides that stimulate these T cells at nanomolar concentrations; they are then capable of transferring disease to NOD-scid mice. Surprisingly, some of the peptides include sequences similar (8 of 10 residues) to those found within the 528-539 fragment of glutamic acid decarboxylase 65. Although this 12-mer glutamic acid decarboxylase 65 fragment is only slightly stimulatory for BDC2.5 T cells (EC(50) > 100 microM), a larger 16-mer fragment, 526-541, shows activity in the low micromolar range (EC(50) = 2.3 microM). Finally, T cells from prediabetic NOD mice respond spontaneously to these peptide analogs in culture; this finding validates them as being related to a critical autoantigen involved in the etiology of spontaneous diabetes and indicates that their further characterization is important for a better understanding of underlying disease mechanisms.  相似文献   

10.
CD80 and CD86 both costimulate T cell activation. Their individual effects in vivo are difficult to study as they are coordinately up-regulated on APCs. We have studied mice expressing rat insulin promoter (RIP)-CD80 and RIP-CD86 on the NOD and NOD.scid genetic background to generate in vivo models, using diabetes as a readout for cytotoxic T cell activation. Accelerated spontaneous diabetes onset was observed in NOD-RIP-CD80 mice and the transfer of diabetes from 6-wk-old NOD mice to NOD.scid-RIP-CD80 mice was greater compared with NOD-RIP-CD86 and NOD.scid-RIP-CD86 mice, respectively. However, the secondary in vivo response was maintained if T cells were activated through CD86 costimulation compared with CD80. This was demonstrated by greater ability to cause recurrent diabetes in NOD-RIP-CD86 diabetic mice transplanted with 6-wk-old NOD islets and adoptively transferred diabetes from diabetic NOD-RIP-CD86 mice to NOD.scid mice. In vitro, CD80 costimulation enhanced cytotoxicity, proliferation, and cytokine secretion in activated CD8 T cells compared with CD86 costimulation. We demonstrated increased CTLA-4 and programmed death-1 inhibitory molecule expression following costimulation by both CD80 and CD86 (CD80 > CD86). Furthermore, T cells stimulated by CD80 were more susceptible to inhibition by CD4(+)CD25(+) T cells. Overall, while CD86 does not stimulate an initial response as strongly as CD80, there is greater sustained activity that is seen even in the absence of continued costimulation. These functions have implications for the engineered use of costimulatory molecules in altering immune responses in a therapeutic setting.  相似文献   

11.
BACKGROUND: We sought to identify novel islet-cell autoantigens to better understand the pathogenesis, prediction, and immunotherapy of type 1 diabetes. MATERIALS AND METHODS: Macaque and human islet cDNA libraries expressed in mammalian cells were screened with human diabetes sera. A positive clone was sequenced directly and after 5' rapid amplification of cDNA ends (RACE). Northern blotting and in situ hybridization revealed the tissue distribution of the corresponding protein. Antigen, expressed by in vitro translation, and tryptic peptides were analyzed by SDS-PAGE. For the immunoprecipitations, 183 diabetic, 60 prediabetic, and 91 control sera were used. Truncated antigens were used in immunoprecipitations for epitope mapping. Recombinant antigen expressed in transfected fibroblasts was used in competition assays. RESULTS: Sequencing yielded an 111-kDa, 1,013 amino acid, transmembrane protein (M1851) containing consensus protein tyrosine phosphatase (PTPase) sequence. M1851 was 77% identical in the intracellular domain, but only 31% identical extracellularly, to the islet-cell autoantigen ICA512. mRNA localized to brain, prostate, pancreatic islets, and adrenal medulla. After limited trypsinization, the in vitro translated antigen was 37 kDa. M1851 was recognized by 47% of prediabetes sera, 31% of new diabetes sera, but only 1% of healthy controls. Only 1/73 sera binding M1851 failed to bind ICA512, whereas 42/114 binding ICA512 did not bind M1851. M1851 reactivity was not fully displaced by ICA512 in 24/49 sera. Removing the C-terminal 27, 80, or 160 amino acids of M1851 decreased reactivity by 70%, 90%, and 100%, respectively. CONCLUSIONS: This new islet-cell PTPase is likely to be the precursor to the 37-kDa tryptic fragment antigen. It is structurally related to ICA512 but has distinct diabetes autoantibody epitopes located at the C terminus.  相似文献   

12.
To exert a therapeutic effect, adoptively transferred tumor-specific CTLs must traffic to sites of tumor burden, exit the circulation, and infiltrate the tumor microenvironment. In this study, we examine the ability of adoptively transferred human CTL to traffic to tumors with disparate chemokine secretion profiles independent of tumor Ag recognition. Using a combination of in vivo tumor tropism studies and in vitro biophotonic chemotaxis assays, we observed that cell lines derived from glioma, medulloblastoma, and renal cell carcinoma efficiently chemoattracted ex vivo-expanded primary human T cells. We compared the chemokines secreted by tumor cell lines with high chemotactic activity with those that failed to elicit T cell chemotaxis (Daudi lymphoma, 10HTB neuroblastoma, and A2058 melanoma cells) and found a correlation between tumor-derived production of MCP-1/CCL2 (> or =10 ng/ml) and T cell chemotaxis. Chemokine immunodepletion studies confirmed that tumor-derived MCP-1 elicits effector T cell chemotaxis. Moreover, MCP-1 is sufficient for in vivo T cell tumor tropism as evidenced by the selective accumulation of i.v. administered firefly luciferase-expressing T cells in intracerebral xenografts of tumor transfectants secreting MCP-1. These studies suggest that the capacity of adoptively transferred T cells to home to tumors may be, in part, dictated by the species and amounts of tumor-derived chemokines, in particular MCP-1.  相似文献   

13.
CD4(+) T cell responses to glutamic acid decarboxylase (GAD65) spontaneously arise in nonobese diabetic (NOD) mice before the onset of insulin-dependent diabetes mellitus (IDDM) and may be critical to the pathogenic process. However, since both CD4(+) and CD8(+) T cells are involved in autoimmune diabetes, we sought to determine whether GAD65-specific CD8(+) T cells were also present in prediabetic NOD mice and contribute to IDDM. To refine the analysis, putative K(d)-binding determinants that were proximal to previously described dominant Th determinants (206-220 and 524-543) were examined for their ability to elicit cytolytic activity in young NOD mice. Naive NOD spleen cells stimulated with GAD65 peptides 206-214 (p206) and 546-554 (p546) produced IFN-gamma and showed Ag-specific CTL responses against targets pulsed with homologous peptide. Conversely, several GAD peptides distal to the Th determinants, and control K(d)-binding peptides did not induce similar responses. Spontaneous CTL responses to p206 and p546 were mediated by CD8(+) T cells that are capable of lysing GAD65-expressing target cells, and p546-specific T cells transferred insulitis to NOD.scid mice. Young NOD mice pretreated with p206 and p546 showed reduced CTL responses to homologous peptides and a delay in the onset of IDDM. Thus, MHC class I-restricted responses to GAD65 may provide an inflammatory focus for the generation of islet-specific pathogenesis and beta cell destruction. This report reveals a potential therapeutic role for MHC class I-restricted peptides in treating autoimmune disease and revisits the notion that the CD4- and CD8-inducing determinants on some molecules may benefit from a proximal relationship.  相似文献   

14.
Peptide-based immunotherapy is one strategy by which to selectively suppress the T cell-mediated destruction of beta cells and treat insulin-dependent diabetes mellitus (IDDM). Here, we investigated whether a panel of T cell epitopes derived from the beta cell autoantigen glutamic acid decarboxylase 65 (GAD65) differ in their capacity to induce Th2 cell function in nonobese diabetic (NOD) mice and in turn prevent overt IDDM at different preclinical stages of disease development. The panel consists of GAD65-specific peptides spanning aa 217-236 (p217), 247-265 (p247), 290-309 (p290), and 524-543 (p524). Our studies revealed that all of the peptides effectively prevented insulitis and diabetes when administered to NOD mice before the onset of insulitis. In contrast, only a mixture of p217 and p290 prevented progression of insulitis and overt IDDM in NOD mice exhibiting extensive beta cell autoimmunity. Immunization with the GAD65-specific peptides did not block IDDM development in NOD mice deficient in IL-4 expression. These findings demonstrate that GAD65-specific peptide immunotherapy effectively suppresses progression to overt IDDM, requires the production of IL-4, and is dependent on the epitope targeted and the extent of preexisting beta cell autoimmunity in the recipient.  相似文献   

15.
Intravenous injection of a cartilage proteoglycan (aggrecan)-specific Th1 hybridoma clone 5/4E8 induced joint lesions similar to those seen in either primary or adoptively transferred arthritis in BALB/c mice. A sister clone, TA20, recognizing the same peptide epitope of human aggrecan and using the same Vbeta4 and Valpha1 segments, failed to induce joint inflammation. This study examines the fine epitope specificities of these two clones. Both 5/4E8 and TA20 hybridomas were generated using T cells from the same arthritic animal that has been immunized with human aggrecan, and both clones recognized peptides containing a consensus GRVRVNSAY sequence. However, flanking regions outside this nonapeptide sequence region had differential impact on peptide recognition by the two clones. Similarly, when single amino acid substitutions were introduced to the consensus sequence, significant differences were detected in the epitope recognition patterns of the T cell hybridomas. The 5/4E8 hybridoma showed greater flexibility in recognition, including a higher responsiveness to the corresponding self (mouse) aggrecan peptide, and produced more inflammatory cytokines (IFN-gamma and TNF-alpha), whereas hybridoma TA20 produced IL-5 in response to either human or mouse self peptide stimulation. These results demonstrate that, within the pool of immunodominant (foreign) peptide-activated lymphocytes, marked individual differences of degeneracy exist in T cell recognition, with possible implications to autopathogenic T cell functions.  相似文献   

16.
The present study was undertaken to analyze the regulatory T cells generated in response to class I derived self-I-A beta(g7) (54-76) peptide. It was observed T cells from young unprimed type 1 diabetes (T1D) prone NOD mice did not respond to self-I-A beta(g7) (54-76) peptide although T cells from primed young NOD mice showed a strong response. T cells from young unprimed BALB/c mice responded to self-I-A beta(d) (62-78) peptide. However, a breakdown of tolerance to these peptides was observed with age in both the strains. Culture supernatant from I-A beta(g7) (54-76) peptide-primed cells secreted large amounts of TGF-beta and inhibited T cell responses in allogeneic-MLR. Further, I-A beta(g7) (54-76) peptide specific T cell lines from young (I-A.Y) and diabetic (I-A.D) NOD mice were established. I-A.Y secreted IL-4, TGF-beta and IL-10 while I-A.D T cell line secreted IL-10 and IFN-gamma. We found that I-A.D T cell line induced diabetes when transferred in NOD/SCID mice but I-A.Y T cell line did not induce disease. These results show that immunization of NOD mice with I-A beta(g7) (54-76) peptide at a younger age induces a regulatory T cell response suggesting that correcting the defects in immunoregulatory mechanisms using self-MHC peptides may be one of the approaches to prevent autoimmune diseases like T1D.  相似文献   

17.
T cell epitope mimicry in antiglomerular basement membrane disease   总被引:4,自引:0,他引:4  
Antiglomerular basement membrane (GBM) disease or Goodpasture's syndrome is among the earliest recognized human autoimmune diseases. Although collagen 4alpha3 NC1 (Col4alpha3NC1) has been identified as the responsible autoantigen, it remains unknown how autoimmunity to this autoantigen is provoked. We have demonstrated in our rat model that a single nephritogenic T cell epitope pCol28-40 of Col4alpha3NC1 induces glomerulonephritis. We hypothesized that microbial peptides that mimic this T cell epitope could induce the disease. Based on the critical residue motif (xxtTxNPsxx) of pCol28-40, seven peptides derived from human infection-related microbes were chosen through GenBank search and synthesized. All peptides showed cross-reactivity with pCol28-40-specific T cells at various levels. Only four peptides induced transient proteinuria and minor glomerular injury. However, the other three peptides induced severe proteinuria and modest to severe glomerulonephritis in 16-25% of the immunized rats. Unexpectedly, the most nephritogenic peptide, pCB, derived from Clostridium botulinum, also induced modest (25%) to severe (25%) pulmonary hemorrhage, another important feature of anti-GBM disease; this was not correlated with the severity of glomerulonephritis. This finding suggests that subtle variations in T cell epitope specificity may lead to different clinical manifestations of anti-GBM disease. In summary, our study raises the possibility that a single T cell epitope mimicry by microbial Ag may be sufficient to induce the anti-GBM disease.  相似文献   

18.
We investigated whether and how molecular mimicry affects the shaping of the helper T cell repertoire. We implemented an algorithm that measures the probability of mimicry between epitopes of known immunogenicity and self or nonself proteomes. This algorithm yields 'similarity profiles', which represent the probability of matching between all contiguous overlapping peptides of the antigen under examination and those in the proteome(s) considered. Similarity profiles between helper T cell epitopes (of self or microbial antigens and allergens) and human or microbial SWISSPROT collections were produced. For each antigen, both collections yielded largely overlapping profiles, demonstrating that self-nonself discrimination does not rely on qualitative features that distinguish human from microbial peptides. However, epitopes whose probability of mimicry with self or nonself prevails are, respectively, tolerated or immunodominant and coexist within the same (auto-)antigen regardless of its self/nonself nature. Epitopes (on self and nonself antigens) can cross-stimulate T cells at increasing potency as their similarity with nonself augments. Mimicry, rather than complicating self-nonself discrimination, assists in the shaping of the immune repertoire and helps define the defensive or autoreactive potential of a T cell. Being a predictor of epitope immunogenicity, it bears relevance to vaccine design.  相似文献   

19.
In previous studies, we reported that mice immunized i.v. with lethally irradiated Leishmania major promastigotes developed substantial resistance to a subsequent L. major infection. However, such protection could be totally suppressed by prior s.c. injection with the same antigens. Both the protective immunity and the inhibition of its induction could be adoptively transferred with specific Lyt-2- T cells. Here, we present evidence showing that protection and disease promotion resulting from i.v. or s.c. immunization, respectively, are mediated by functionally distinct subsets of T cells. In a series of titration experiments, it was found that freshly isolated T cells derived from prophylactically i.v. immunized BALB/c mice were either protective (greater than 10(7) cells/recipient) or ineffective (less than 10(7) cells/recipient). No exacerbation of disease was observed at any dose. Conversely, T cells from mice immunized s.c. either accelerated disease development and inhibited protective immunization (greater than 10(7) cells/recipient) or had no effect (less than 10(7) cells/recipient). No protection was observed at any dose tested. In mixed transfer experiments, increasing numbers of T cells from s.c. immunized donors progressively inhibited the protective effect of T cells from i.v. immunized donors. Supernatant of T cell cultures from protectively immunized donors contained substantial macrophage-activating factor whereas such activity was not detectable in the supernatant of T cell culture from s.c. immunized donors. Analysis by flow cytometry showed that the spleen and lymph nodes of normal, i.v., or s.c. immunized BALB/c mice contained similar ratios of L3T4+ cells and Lyt-2+ cells.  相似文献   

20.
Cyclin-dependent kinase 4 (Cdk4) plays a central role in perinatal pancreatic beta cell replication, thus becoming a potential target for therapeutics in autoimmune diabetes. Its hyperactive form, Cdk4R24C, causes beta cell hyperplasia without promoting hypoglycemia in a nonautoimmune-prone mouse strain. In this study, we explore whether beta cell hyperproliferation induced by the Cdk4R24C mutation balances the autoimmune attack against beta cells inherent to the NOD genetic background. To this end, we backcrossed the Cdk4R24C knockin mice, which have the Cdk4 gene replaced by the Cdk4R24C mutated form, onto the NOD genetic background. In this study, we show that NOD/Cdk4R24C knockin mice exhibit exacerbated diabetes and insulitis, and that this exacerbated diabetic phenotype is solely due to the hyperactivity of the NOD/Cdk4R24C immune repertoire. Thus, NOD/Cdk4R24C splenocytes confer exacerbated diabetes when adoptively transferred into NOD/SCID recipients, compared with NOD/wild-type (WT) donor splenocytes. Accordingly, NOD/Cdk4R24C splenocytes show increased basal proliferation and higher activation markers expression compared with NOD/WT splenocytes. However, to eliminate the effect of the Cdk4R24C mutation specifically in the lymphocyte compartment, we introduced this mutation into NOD/SCID mice. NOD/SCID/Cdk4R24C knockin mice develop beta cell hyperplasia spontaneously. Furthermore, NOD/SCID/Cdk4R24C knockin females that have been adoptively transferred with NOD/WT splenocytes are more resistant to autoimmunity than NOD/SCID WT female. Thus, the Cdk4R24C mutation opens two avenues in the NOD model: when expressed specifically in beta cells, it provides a new potential strategy for beta cell regeneration in autoimmune diabetes, but its expression in the immune repertoire exacerbates autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号