首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa protein with five overlapping disulfide bonds. We show that reduced RBI can be refolded quantitatively in glutathione redox buffers in vitro and spontaneously adopts the single correct conformation out of 750 possible species with five disulfide bonds. Under oxidizing redox conditions, however, RBI folding is hampered by accumulation of a large number of intermediates with non-native disulfide bonds, while a surprisingly low number of intermediates accumulates under optimal or reducing redox conditions. DsbC catalyzes folding of RBI under all redox conditions in vitro, but is particularly efficient in rearranging buried, non-native disulfide bonds formed under oxidizing conditions. In contrast, the influence of DsbA on the refolding reaction is essentially restricted to reducing redox conditions where disulfide formation is rate limiting. The effects of DsbA and DsbC on folding of RBI in E.coli are very similar to those observed in vitro. Whereas overexpression of DsbA has no effect on the amount of correctly folded RBI, co-expression of DsbC enhanced the efficiency of RBI folding in the periplasm of E.coli about 14-fold. Addition of reduced glutathione to the growth medium together with DsbC overexpression further increased the folding yield of RBI in vivo to 26-fold. This shows that DsbC is the bacterial enzyme of choice for improving the periplasmic folding yields of proteins with very complex disulfide bond patterns.  相似文献   

2.
The C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (F19) is a leading candidate for the development of a malaria vaccine. Successful vaccination trials on primates, immunochemistry, and structural studies have shown the importance of its native conformation for its protective role against infection. F19 is a disulfide-rich protein, and the correct pairing of its 12 half-cystines is required for the native state of the protein. F19 has been produced in the Escherichia coli periplasm, which has an oxidative environment favorable for the formation of disulfide bonds. F19 was either expressed as a fusion with the maltose binding protein (MBP) or directly addressed to the periplasm by fusing it with the MBP signal peptide. Direct expression of F19 in the periplasm led to a misfolded protein with a heterogeneous distribution of disulfide bridges. On the contrary, when produced as a fusion protein with E. coli MBP, the F19 moiety was natively folded. Indeed, after proteolysis of the fusion protein, the resulting F19 possesses the structural characteristics and the immunochemical reactivity of the analogous fragment produced either in baculovirus-infected insect cells or in yeast. These results demonstrate that the positive effect of MBP in assisting the folding of passenger proteins extends to the correct formation of disulfide bridges in vivo. Although proteins or protein fragments fused to MBP have been frequently expressed with success, our comparative study evidences for the first time the helping property of MBP in the oxidative folding of a disulfide-rich protein.  相似文献   

3.
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.  相似文献   

4.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

5.
The thiol/disulfide oxidoreductase DsbA is the strongest oxidant of the thioredoxin superfamily and is required for efficient disulfide bond formation in the periplasm of Escherichia coli. To determine the importance of the redox potential of the final oxidant in periplasmic protein folding, we have investigated the ability of the most reducing thiol/disulfide oxidoreductase, E.coli thioredoxin, of complementing DsbA deficiency when secreted to the periplasm. In addition, we secreted thioredoxin variants with increased redox potentials as well as the catalytic a-domain of human protein disulfide isomerase (PDI) to the periplasm. While secreted wild-type thioredoxin and the most reducing thioredoxin variant could not replace DsbA, all more oxidizing thioredoxin variants as well as the PDI a-domain could complement DsbA deficiency in a DsbB-dependent manner. There is an excellent agreement between the activity of the secreted thioredoxin variants in vivo and their ability to oxidize polypeptides fast and quantitatively in vitro. We conclude that the redox potential of the direct oxidant of folding proteins and in particular its reactivity towards reduced polypeptides are crucial for efficient oxidative protein folding in the bacterial periplasm.  相似文献   

6.
The production of human proinsulin in its disulfide-intact, native form in Escherichia coli requires disulfide bond formation and the periplasmic space is the favourable compartment for oxidative folding. However, the secretory expression of proinsulin is limited by its high susceptibility to proteolysis and by disulfide bond formation, which is rate-limiting for proinsulin folding. In this report we describe a method for the production of high amounts of soluble, native human proinsulin in E. coli. We fused proinsulin to the C-terminus of the periplasmic disulfide oxidoreductase DsbA via a trypsin cleavage site. As DsbA is the main catalyst of disulfide bond formation in E. coli, we expected increased yields of proinsulin by intra- or intermolecular catalysis of disulfide bond formation. In the context of the fusion protein, proinsulin was found to be stabilised, probably due to an increased solubility and faster disulfide bond formation. To increase the yield of DsbA-proinsulin in the periplasm, several parameters were optimised, including host strains and cultivation conditions, and in particular growth medium composition and supplement of low molecular weight additives. We obtained a further, about three-fold increase in the amount of native DsbA-proinsulin by addition of L-arginine or ethanol to the culture medium. The maximum yield of native human proinsulin obtained from the soluble periplasmic fraction after specific cleavage of the fusion protein with trypsin was 9.2 mg g(-1), corresponding to 1.8% of the total cell protein.  相似文献   

7.
The precursor of Escherichia coli RTEM beta-lactamase was purified to homogeneity on a milligram scale by a procedure independent of the binding properties of the protein and refolded to an active, reduced form. For comparing the folding kinetics, the wild-type enzyme was reduced and a mutant was constructed, in which the two cysteines that form a very stable disulfide bond in the RTEM enzyme were both changed into alanines. The rate of folding was determined by directly measuring the increase in enzymatic activity. The reduced precursor folds at least 15 times more slowly than either the reduced mature enzyme or the mature Cys----Ala double mutant under identical conditions. The wild-type enzyme, the Cys----Ala double mutant and the precursor protein all had similar KM values, demonstrating a very similar native state. The slow folding of the precursor compared with the mature form may be an essential and general feature to secure a transport competent conformation necessary for the translocation through a membrane in protein export. This folding assay of a precursor by directly following its enzymatic activity may facilitate the characterization of putative folding modulators in bacterial membrane transport.  相似文献   

8.
Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. After propeptide-mediated folding in the periplasm, the proenzyme is autoproteolytically processed, prior to translocation of both the mature enzyme and the propeptide across the outer membrane. The formation of the two disulfide bonds present in the mature enzyme was examined by studying the expression of the wild-type enzyme and of alanine for cysteine mutant derivatives in the authentic host and in dsb mutants of Escherichia coli. It appeared that the two disulfide bonds are formed successively. First, DsbA catalyzes the formation of the disulfide bond between Cys-270 and Cys-297 within the proenzyme. This step is essential for the subsequent autoproteolytic processing to occur. The second disulfide bond between Cys-30 and Cys-57 is formed more slowly and appears to be formed after processing of the proenzyme, and its formation is catalyzed by DsbA as well. This second disulfide bond appeared to be required for the full proteolytic activity of the enzyme and contributes to its stability.  相似文献   

9.
A human truncated macrophage colony-stimulating factor (M-CSF) encoding the amino acid residues from 3 to 153 of the native M-CSF was expressed by using a two-cistron expression system in Escherichia coli. The truncated M-CSF found in inclusion bodies was renatured and had CSF activity. Purification, which included a QAE-ZeTa preparative cartridge concentration step followed sequentially by HPLC on TSK-gel Phenyl-5PW and TSK-gel DEAE-5PW columns, gave an overall yield of 63.8%. The purified truncated M-CSF had a specific activity of 4 x 10(7) units/mg of protein. Peptide mapping of a lysylendopeptidase digest by reversed-phase HPLC confirmed the amino acid sequence predicted from the cDNA sequence. SDS-PAGE of the purified truncated M-CSF gave a single band at 17 kDa under reducing conditions and at 32 kDa under non-reducing conditions. Activated Thiol-Sepharose 6B column chromatography and other experiments failed to detect any free cysteine residue in spite of the existence of 7 cysteine residues in the truncated M-CSF subunit. These results indicate that it is a dimeric structure linked by one or more intermolecular disulfide bonds.  相似文献   

10.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

11.
Preferential binding of an unfolded protein to DsbA.   总被引:6,自引:0,他引:6       下载免费PDF全文
The oxidoreductase DsbA from the periplasm of escherichia coli introduces disulfide bonds into proteins at an extremely high rate. During oxidation, a mixed disulfide is formed between DsbA and the folding protein chain, and this covalent intermediate reacts very rapidly either to form the oxidized protein or to revert back to oxidized DsbA. To investigate its properties, a stable form of the intermediate was produced by reacting the C33A variant of DsbA with a variant of RNase T1. We find that in this stable mixed disulfide the conformational stability of the substrate protein is decreased by 5 kJ/mol, whereas the conformational stability of DsbA is increased by 5 kJ/mol. This reciprocal effect suggests strongly that DsbA interacts with the unfolded substrate protein not only by the covalent disulfide bond, but also by preferential non-covalent interactions. The existence of a polypeptide binding site explains why DsbA oxidizes protein substrates much more rapidly than small thiol compounds. Such a very fast reaction is probably important for protein folding in the periplasm, because the accessibility of the thiol groups for DsbA can decrease rapidly when newly exported polypeptide chains begin to fold.  相似文献   

12.
Helicobacter pylori infection increases the risk of cardiovascular diseases besides leading to duodenal and gastric peptic ulcerations. H. pylori cysteine-rich protein B (HcpB) is a disulfide-rich repeat protein that belongs to the family of Sel1-like repeat proteins. HcpB contains four pairs of anti-parallel alpha helices that fold into four repeats with disulfide bonds bridging the helices of each repeat. Recent in vitro oxidative refolding of HcpB identified that the formation and folding of the disulfide bond in the N-terminal repeat are the rate limiting step. Here we attempted to understand the disulfide formation of HcpB in the periplasm of Escherichia coli. The protein was expressed in wild type (possessed enzymes DsbA, B, C, and D) and knock out (Dsb enzymes deleted one at a time) E. coli strains. The soluble part of the periplasm when analyzed by SDS-PAGE and Western Blot showed that the wild type and DsbC/D knock out strains contained native oxidized HcpB while the protein was absent in the DsbA/B knock out strains. Hence the recombinant expression of HcpB in E. coli requires DsbA and DsbB for disulfide bond formation and it is independent of DsbC and DsbD. Prolonged cell growth resulted in the proteolytic degradation of the N-terminal repeat of HcpB. The delayed folding of the N-terminal repeat observed during in vitro oxidative refolding could be the reason for the enhanced susceptibility to proteolytic cleavage in the periplasm. In summary, a good correlation between in vivo and in vitro disulfide bond formation of HcpB is observed.  相似文献   

13.
Proteins are exported across the bacterial cytoplasmic membrane either as unfolded precursors via the Sec machinery or in folded conformation via the Tat system. The ribose-binding protein (RBP) of Escherichia coli is a Sec-pathway substrate. Intriguingly, it exhibits fast folding kinetics and its export is independent of SecB, a general chaperone protein dedicated for protein secretion. In this study, we found that the quantity of RBP was significantly reduced in the periplasm of tat mutants, which was restored by in trans expression of the tatABC genes. Pulse-chase experiments showed that significant amount of wild-type RBP was processed in a secY mutant in the presence of azide (SecA inhibitor), whereas the processing of a slow folding RBP derivative was almost completely blocked under the same conditions. These results would suggest that under the Sec-defective conditions the export of a portion of folded RBP could be rescued by the Tat system.  相似文献   

14.
Sacchromyces cerevisiae protein disulfide isomerase (yPDI) was expressed in the E. coli periplasm by using plasmids encoding the OmpA-yPDI-(His)(6) fusion gene under the control of the araBAD, trc, or T7 promoter. The expression levels of yeast PDI under these promoters were compared. Our results showed that yeast PDI expressed into the periplasm could catalyze the formation of disulfide bonds in alkaline phosphatase, restoring the phoA(+) phenotype in dsbA(-) mutants. The yeast PDI was purified from the Escherichia coli periplasm and shown to exhibit catalytic properties comparable to those of the rat enzyme with reduced RNase as substrate. In vivo, coexpression of the yeast PDI increased the yield of bovine pancreatic trypsin inhibitor (BPTI) in E. coli by 2-fold, similar to the effect seen previously with the coexpression of the rat enzyme. However yeast PDI was more effective than rat PDI in facilitating the expression of active tissue plasminogen activator (tPA). These results point to differences in the substrate specificity of various PDI enzymes, at least in the context of the E. coli periplasm.  相似文献   

15.
Intimins from pathogenic bacteria promote intimate bacterial adhesion to epithelial cells. Several structurally similar domains form on the bacterial cell surface an extended rigid rod that exposes the carboxy-terminal domain, which interacts with the translocated intimin receptor. We constructed a series of intimin-derived fusion proteins consisting of carboxy-terminally truncated intimin and the immunoglobulin light-chain variable domain REIv, ubiquitin, calmodulin, beta-lactamase inhibitor protein, or beta-lactamase. By systematically investigating the intimin-mediated cell surface exposure of these passenger domains in the presence or absence of compounds that interfere with outer membrane stability or passenger domain folding, we acquired experimental evidence that intimin-mediated protein export across the outer membrane requires, prior to export, the maintenance of a translocation-competent conformation that may be distinct from the final protein structure. We propose that, during export, competition exists between productive translocation and folding of the passenger domain in the periplasm into a stable conformation that is not compatible with translocation through the bacterial outer membrane. These results may expand understanding of the mechanism by which intimins are inserted into the outer membrane and expose extracellular domains on the cell surface.  相似文献   

16.
17.
The mechanism of protein secretion mediated by the beta-domain of the Neisseria gonorrhoeae IgA protease, a paradigm of a family of secreted polypeptides of Gram-negative bacteria called autotransporters, has been examined using a single-chain antibody (scFv) as a reporter passenger domain to monitor the translocation process. Fusion of a scFv to the beta-module of the IgA protease allowed us to investigate the passage of the chimeric protein through the periplasm, its insertion into the outer membrane and the movement of the N-terminal moiety towards the cell surface. As the binding activity of the scFv to its target antigen is entirely dependent on the formation of disulphide bonds, the relationship between secretion, folding and formation of S-S bridges could be analysed in detail. In contrast to the current notion that only an unfolded N-passenger domain can be translocated through the beta-domain, our results show that the scFv is able to pass through the outer membrane, albeit at a threefold reduced level, in an active conformation with its disulphide bonds preformed in the periplasm through the action of the DsbA product. These data call for a re-evaluation of the prevailing model for secretion of the N-domain of autotransporters.  相似文献   

18.
S Kamitani  Y Akiyama    K Ito 《The EMBO journal》1992,11(1):57-62
Tn5 insertion mutations of Escherichia coli were isolated that impaired the formation of correctly folded alkaline phosphatase (PhoA) in the periplasm. The PhoA polypeptide synthesized in the mutants was translocated across the cytoplasmic membrane but not released into the periplasmic space. It was susceptible to degradation by proteases in vivo and in vitro. The wild-type counterpart of this gene (named ppfA) has been sequenced and shown to encode a periplasmic protein with a pair of potentially redox-active cysteine residues. PhoA synthesized in the mutants indeed lacked disulfide bridges. These results indicate that the folding of PhoA in vivo is not spontaneous but catalyzed at least at the disulfide bond formation step.  相似文献   

19.
As part of the membrane attack complex complement protein C9 is responsible for direct killing of bacteria. Here we show that in the periplasmic space of an Escherichia coli cell C9 is converted from a protoxin to a toxin by periplasmic conditions missing in spheroplasts. This conversion is independent of the pathway by which C9 enters the periplasm. Both, C9 shocked into the periplasm and plasmid-expressed C9 targeted to the periplasm via a signal sequence are toxic. Toxicity requires disulfide-linked C9 because export into the periplasm of cells defective in disulfide bond synthesis (dsbA and dsbB mutants) is not toxic unless N-acetylcysteine is added externally to promote cystines. A N-terminal fragment, C9[1-144], is not toxic nor is cytoplasmically expressed C9, even in trxB mutants that are able to form disulfide bonds in the cytoplasm. Importantly, expression of full-length C9 in complement-resistant cells has no effect on their viability. Expression and translocation into the periplasm may provide a novel model to identify molecular mechanisms of other bactericidal disulfide-linked proteins and to investigate the nature of bacterial complement resistance.  相似文献   

20.
Heat-stable enterotoxin II of Escherichia coli (STII) is synthesized as a precursor form consisting of pre- and mature regions. The pre-region is cleaved off from the mature region during translocation across the inner membrane, and the mature region emerges in the periplasm. The mature region, composed of 48 amino acid residues, is processed in the periplasm by DsbA to form an intramolecular disulfide bond between Cys-10 and Cys-48 and between Cys-21 and Cys-36. STII formed with these disulfide bonds is efficiently secreted out of the cell through the secretory system, including TolC. However, it remains unknown which regions of STII are involved in interaction with TolC. In this study, we mutated the STII gene and examined the secretion of these STIIs into the culture supernatant. A deletion of the part covering from amino acid residue 37 to the carboxy terminal end did not markedly reduce the efficiency of secretion of STII into the culture supernatant. On the other hand, the efficiency of secretion of the peptide covering from the amino terminal end to position 18 to the culture supernatant was significantly low. These observations indicated that the central region of STII from amino acid residue 19 to that at position 36 is involved in the secretion of STII into the milieu. The experiment using a dsbA-deficient strain of E. coli showed that the disulfide bond between Cys-21 and Cys-36 by DsbA is necessary for STII to adapt to the structure that can cross the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号