首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antimicrobial efficacy of ultra-high-pressure (UHP) can be enhanced by application of additional hurdles. The objective of this study was to systematically assess the enhancement in pressure lethality by TBHQ treatment, against barotolerant strains of Escherichia coli O157:H7 and Listeria monocytogenes. Two L. monocytogenes Scott A and the barotolerant OSY-328 strain, and two E. coli O157:H7 strains, EDL-933 and its barotolerant mutant, OSY-ASM, were tested. Cell suspensions containing TBHQ (50 ppm, dissolved in dimethyl sulfoxide) were pressurized at 200 to 500 MPa (23+/-2 degrees C) for 1 min, plated on tryptose agar and enumerated the survivors. The TBHQ-UHP combination resulted in synergistic inactivation of both pathogens, with different degrees of lethality among strains. The pressure lethality threshold, for the combination treatment, was lower for E. coli O157:H7 (> or = 200 MPa) than for L. monocytogenes (> 300 MPa). E. coli O157:H7 strains were extremely sensitive to the TBHQ-UHP treatment, compared to Listeria strains. Interestingly, a control treatment involving DMSO-UHP combination consistently resulted in higher inactivation than that achieved by UHP alone, against all strains tested. However, sensitization of the pathogens to UHP by the additives (TBHQ in DMSO) was prominently greater for UHP than DMSO. Differences in sensitivities to the treatment between these two pathogens may be attributed to discrepancies in cellular structure or physiological functions.  相似文献   

2.
We investigated the antimicrobial efficacy of cinnamon extracts in laboratory prepared Kinnow-mandarin carrot blends challenged with Escerichia coli O157:H7. Freshly squeezed carrot and kinnow-mandarin juices were mixed to obtain a typical blend, inoculated with E. coli O157:H7 cultures at 102 CFU/mL with and without cinnamon extracts (0.3%) and stored at 4, 8 and 28°C for up to 10 hours. Counts on tryptic soy agar (TSA) selective medium (Mac conkey sorbitol agar) and thin agar layer (TAL) were determined at every 2 hour. The TAL method was used for recovery of sublethally injured cells. Inactivation of E. coli O157:H7 in blends containing 0.3% cinnamon extracts were observed, with killing effects being more pronounced at 28°C, similar trends were evident with blends stored under refrigeration conditions (4 and 8°C).The decrease in counts were attributed to several factors namely, pH, storage temperature and addition of cinnamon. The results of our study indicate that cinnamon extracts could be used as an effective, natural antimicrobial for assuring consumer safety at the point of preparation of carrot-kinnow mandarin blends, which is a popular, nutritional beverage consumed in India.  相似文献   

3.
This study was attempted to develop a new exponential sum model to describe the effect of temperature on growth rate (GR) of Escherichia coli O157:H7 in broth. The growth rates of E. coli O157:H7 at different storage temperatures (4, 10, 15, 20, 25, 30, and 35°C) estimated by fitting with the modified Gompertz model were used to develop secondary models such as square root model, Ratkowsky model and exponential sum model. Measures of coefficient of determination (R 2), root mean square error (RMSE) and the sum of squares due to error (SSE) were employed to compare the performances of these three secondary models. Based on these criteria, the developed exponential sum model showed the better goodness-of-fit and performance.  相似文献   

4.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

5.
6.
The use of lignocellulose as a source of sugars for bioproducts requires the development of biocatalysts that maximize product yields by fermenting mixtures of hexose and pentose sugars to completion. In this study, we implicate mgsA encoding methylglyoxal synthase (and methylglyoxal) in the modulation of sugar metabolism. Deletion of this gene (strain LY168) resulted in the co-metabolism of glucose and xylose, and accelerated the metabolism of a 5-sugar mixture (mannose, glucose, arabinose, xylose and galactose) to ethanol.  相似文献   

7.
8.
An exponential linear destruction was observed for Escherichia coli O157:H7 and Salmonella typhimurium in cattle manure and manure slurry stored at 4, 20 or 37 degrees C. The resulting decimal reduction times ranged from 6 days to 3 weeks in manure and from 2 days to 5 weeks in manure slurry. The main effects of time as well as temperature were pronounced with the most rapid destruction at 37 degrees C. The ammonia concentration in manure increased slightly during storage but did not exceed 0.1%. pH values in the deeper layers of manure remained constant except at 37 degrees C when the pH increased by 1 unit in 60 days. In the surface layers of manure, pH increased by 1.5-2 units, the oxidation-reduction potential of the manure declined rapidly to values below -200 mV. These changes do not seem to be reflected in changing rates of bacterial destruction. The observed order of destruction makes it possible to predict storage conditions (temperature and time) that will lead to a predetermined level of reduction of the two pathogens.  相似文献   

9.
Our group has previously reported a sandwich-based strip immunoassay for rapid detection of Escherichia coli O157:H7 [Anal. Chem. 75 (2003) 4330]. In the present study, a microcapillary flow injection liposome immunoanalysis (mFILIA) system was developed for the detection of heat-killed E. coli O157:H7. A fused-silica microcapillary with anti-E. coli O157:H7 antibodies chemically immobilized on the internal surface via protein A served as an immunoreactor/immunoseparator for the mFILIA system. Liposomes tagged with anti-E. coli O157:H7 and encapsulating a fluorescent dye were used as the detectable label. In the presence of E. coli O157:H7, sandwich complexes were formed between the immobilized antibodies in the column, the sample of E. coli O157:H7 and the antibody-tagged sulforhodamine-dye-loaded liposomes. Signals generated by lysing the bound liposomes with 30 mM n-octyl-beta-D-glucopyranoside were measured by a fluorometer. The detected signal was directly proportional to the amount of E. coli O157:H7 in the test sample. The mFILIA system successfully detected as low as 360 cells/mL (equivalent to 53 heat-killed bacteria in the 150 microL of the sample solution injected). MeOH (30%) was used for the regeneration of antibody binding sites in the capillary after each measurement, which allowed the immunoreactor/immunoseparator to be used for at least 50 repeated assays. The calibration curve for heat-killed E. coli O157:H7 has a working range of 6 x 10(3)-6 x 10(7)cells, and the total assay time was less than 45 min. A coefficient of variation for triplicate measurements was < or =8.9%, which indicates an acceptable level of reproducibility for this newly developed method.  相似文献   

10.
The study was conducted to quantify the concordance of antibiotic resistance and ERIC-PCR DNA fingerprint pattern in Escherichia coli (E. coli) isolated from farmers and their broilers of 95 broiler farms in Songkhla province, Thailand. Four hundred and fifty-seven and 460 E. coli isolates from both groups produced 35 patterns of antibiotics resistance. Mono-resistance to doxycycline (23.2%) in isolates from farmers and multiple resistance to doxycycline, nalidixic acid, norfloxacin and ciprofloxacin (17.8%) were the most common finding in broilers. Twenty-seven farms had 44 within-farm concordant patterns of resistance. From simulation, the frequency of concordance was significantly higher than concordance by chance alone (P < 0.05). Out of these 44 matched sets, only four had the same DNA fingerprint pattern. Concordance by DNA pattern was also not associated with phenotypic resistance. Clonal spread is therefore not a good explanation of the concordance in this population. Other mechanisms need further analysis.  相似文献   

11.
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase (CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric, high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing the genes of a strict anaerobe, Clostridium acetobutylicum.  相似文献   

12.
In Shigella and enteroinvasive Escherichia coli (EIEC), the etiologic agents of shigellosis in humans, the determinants responsible for entry of bacteria into and dissemination within epithelial cells are encoded by a virulence plasmid. To understand the evolution of the association between the virulence plasmid and the chromosome, we performed a phylogenetic analysis using the sequences of four chromosomal genes (trpA, trpB, pabB, and putP) and three virulence plasmid genes (ipaB, ipaD, and icsA) of a collection of 51 Shigella and EIEC strains. The phylogenetic tree derived from chromosomal genes showed a typical star phylogeny, indicating a fast diversification of Shigella and EIEC groups. Phylogenetic groups obtained from the chromosomal and plasmidic genes were similar, suggesting that the virulence plasmid and the chromosome share similar evolutionary histories. The few incongruences between the trees could be attributed to exchanges of fragments of different plasmids and not to the transfer of an entire plasmid. This indicates that the virulence plasmid was not transferred between the different Shigella and EIEC groups. These data support a model of evolution in which the acquisition of the virulence plasmid in an ancestral E. coli strain preceded the diversification by radiation of all Shigella and EIEC groups, which led to highly diversified but highly specialized pathogenic groups.  相似文献   

13.
Analysis of the oligonucleotide composition of the complete E. coli genome and its σ70-specific promoters shows that promoter DNA mainly contains AT-rich hexanucleotides that have functionally important physical properties (propensity to form ‘low-melting’ regions and helix bends). Comparative analysis of the electrostatic characteristics reveals that hexanucleotides corresponding to more electronegative surroundings are mostly found in promoter DNA.  相似文献   

14.
The effect of feeding Lactobacillus fermentum I5007 on the immune system of weaned pigs with or without E. coli challenge was determined. Twenty-four weaned barrows (6.07 ± 0.63 kg BW) were randomly assigned to one of four treatments (N = 6) in a factorial design experiment. The first two treatments consisted of healthy piglets with half of the pigs receiving no treatment while the other half was orally administered with L. fermentum I5007 (108 CFU/ml) at a daily dose of 20 ml. Pigs in the second two treatments were challenged on the first day with 20 ml of E. coli K88ac (108 CFU/ml). Half of these pigs were not treated while the remaining pigs were treated with 20 ml of L. fermentum I5007 (108 CFU/ml). Peripheral blood lymphocytes subsets were determined using flow cytometry. The intestinal mucosal immunity of the pigs was monitored by real time polymerase chain reaction. The cytokine content of the pig’s serum was also analyzed. Oral administration of L. fermentum I5007 increased blood CD4+ lymphocyte subset percentage as well as tumor necrosis factor-α and interferon-γ expression in the ileum. Pigs challenged with E. coli had elevated jejunal tumor necrosis factor-α while interferon-γ expression was increased throughout the small intestine. There was no difference in the concentration of the cytokines interleukin-2, interleukin-6, tumor necrosis factor-α and interferon-γ in the serum. CD8+ and CD4+/CD8+ in peripheral blood were not affected by treatment. In conclusion, L. fermentum I5007 can enhance T cell differentiation and induce ileum cytokine expression suggesting that this probiotic strain could modulate immune function in piglets.  相似文献   

15.
A total of 401 enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates from two experimentally infected calves were analyzed using molecular biological methods. Genetic differences detected by pulsed-field gel electrophoresis were observed between the inoculated and recovered strains as early as 1 day post inoculation. The loss of the inoculated clone was observed in one calf. Replication and dissemination of the EHEC O157:H7 strains that mutated in cattle may result in the diversification of this organism among cattle populations.  相似文献   

16.
Aspergillus section Nigri strains Aspergillus aculeatus Ege-K 258, A. foeditus var. pallidus Ege-K156, A. niger Ege-K 4 and A. tubingensis Ege-K 265 were used to treat olive mill wastewater (OMW) in an investigation aimed at exploring their dephenolisation and decolourisation ability and, consequently, the economic feasibility of using any or all of these strains in a pre-treatment step in the processing of OMW. Of these strains A. tubingensis Ege-K 265 resulted in an 80% decolourisation of twofold-diluted OMW and a 30% decolourisation of undiluted OMW; in addition, it was able to remove approximately 30% of all phenolic compounds in both twofold-diluted and undiluted OMW. We conclude that A. tubingensis Ege-K 265 could be effectively used in the pre-treatment step of a combined aerobic-anaerobic process to solve the environmental problems caused by OMW in Mediterranean countries.  相似文献   

17.
Bacteriophage ΦV10 is a temperate phage, which specifically infects Escherichia coli O157:H7. The nucleotide sequence of the ΦV10 genome is 39 104 bp long and contains 55 predicted genes. ΦV10 is closely related to two previously sequenced phages, the Salmonella enterica serovar Anatum (Group E1) phage ɛ15 and a prophage from E. coli APEC O1. The attachment site of ΦV10, like those of its two closest relatives, overlaps the 3' end of guaA in the host chromosome. ΦV10 encodes an O -acetyltransferase, which modifies the O157 antigen. This modification is sufficient to block ΦV10 superinfection, indicating that the O157 antigen is most likely the ΦV10 receptor.  相似文献   

18.
Previously, we produced two groups of gnotobiotic mice, GB-3 and GB-4, which showed different responses to Escherichia coli O157:H7 challenge. E. coli O157:H7 was eliminated from GB-3, whereas GB-4 mice became carriers. It has been reported that the lag time of E. coli O157:H7 growth in 50% GB-3 caecal suspension was extended when compared to GB-4 caecal suspension. In this study, competition for nutrients between intestinal microbiota of GB-3 and GB-4 mice and E. coli O157:H7 was examined. Amino acid concentrations in the caecal contents of GB-3 and GB-4 differed, especially the concentration of proline. The supplementation of proline into GB-3 caecal suspension decreased the lag time of E. coli O157:H7 growth in vitro. When E. coli O157:H7 was cultured with each of the strains used to produce GB-3 mice in vitro, 2 strains of E. coli (proline consumers) out of 5 enterobacteriaceae strains strongly suppressed E. coli O157:H7 growth and the suppression was attenuated by the addition of proline into the medium. These results indicate that competition for proline with indigenous E. coli affected the growth of E. coli O157:H7 in vivo and may contribute to E. coli O157:H7 elimination from the intestine.  相似文献   

19.
According to the amino acid sequence, a codon-optimized xylanase gene (xynA1) from Thermomyces lanuginosus DSM 5826 was synthesized to construct the expression vector pHsh-xynA1. After optimization of the mRNA secondary structure in the translational initiation region of pHsh-xynA1, free energy of the 70 nt was changed from −6.56 to −4.96 cal/mol, and the spacing between AUG and the Shine-Dalgarno sequence was decreased from 15 to 8 nt. The expression level was increased from 1.3 to 13% of total cell protein. A maximum xylanase activity of 47.1 U/mL was obtained from cellular extract. The recombinant enzyme was purified 21.5-fold from the cellular extract of Escherichia coli by heat treatment, DEAE-Sepharose FF column and t-Butyl-HIC column. The optimal temperature and pH were 65 °C and pH 6.0, respectively. The purified enzyme was stable for 30 min over the pH range of 5.0–8.0 at 60 °C, and had a half-life of 3 h at 65 °C.  相似文献   

20.
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号