首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transport of proteins via the secretory pathway is controlled by a combination of signal dependent cargo selection as well as unspecific bulk flow of membranes and aqueous lumen. Using the plant vacuolar sorting receptor as model for membrane spanning proteins, we have distinguished bulk flow from signal mediated protein targeting in biosynthetic and endocytic transport routes and investigated the influence of transmembrane domain length. More specifically, long transmembrane domains seem to prevent ER retention, either by stimulating export or preventing recycling from post ER compartments. Long transmembrane domains also seem to prevent endocytic bulk flow from the plasma membrane, but the presence of specific endocytosis signals overrules this in a dominant manner.  相似文献   

2.
Although many proteins have been shown to participate in ligand‐stimulated endocytosis of EGF receptor (EGFR), the adaptor protein responsible for interaction of activated EGFR with endocytic machinery remains elusive. We show here that EGF stimulates transient tyrosine phosphorylation of Tom1L1 by the Src family kinases, resulting in transient interaction of Tom1L1 with the activated EGFR bridged by Grb2 and Shc. Cytosolic Tom1L1 is recruited onto the plasma membrane and subsequently redistributes into the early endosome. Mutant forms of Tom1L1 defective in Tyr‐phosphorylation or interaction with Grb2 are incapable of interaction with EGFR. These mutants behave as dominant‐negative mutants to inhibit endocytosis of EGFR. RNAi‐mediated knockdown of Tom1L1 inhibits endocytosis of EGFR. The C‐terminal tail of Tom1L1 contains a novel clathrin‐interacting motif responsible for interaction with the C‐terminal region of clathrin heavy chain, which is important for exogenous Tom1L1 to rescue endocytosis of EGFR in Tom1L1 knocked‐down cells. These results suggest that EGF triggers a transient Grb2/Shc‐mediated association of EGFR with Tyr‐phosphorylated Tom1L1 to engage the endocytic machinery for endocytosis of the ligand–receptor complex.  相似文献   

3.
Clathrin-independent endocytosis occurs in all cells and interest in this mode of cellular entry has grown. Although this form of endocytosis was first described for entry of bacterial toxins, here we focus our attention on the endogenous cell surface “cargo” proteins that enter cells by this mechanism. The cargo proteins entering by this mechanism are varied and include nutrient transporters, ion channels, cell adhesion molecules and proteins associated with the immune system. Despite the apparent lack of selection at the cell surface, we provide some examples of specific sorting of these cargo proteins after entry, leading to distinct itineraries and cellular fates.  相似文献   

4.
Impaired trabecular meshwork (TM) outflow is implicated in the pathogenesis of primary open-angle glaucoma (POAG). We previously identified the association of a caveolin-1 (CAV1) variant with POAG by genome-wide association study. Here we report a study of CAV1 knockout (KO) effect on human TM cell properties. We generated human CAV1-KO TM cells by CRISPR/Cas9 technology, and we found that the CAV1-KO TM cells less adhered to the surface coating than the wildtype TM cells by 69.34% ( P < 0.05), but showed no difference in apoptosis. Higher endocytosis ability of dextran and transferrin was also observed in the CAV1-KO TM cells (4.37 and 1.89-fold respectively, P < 0.001), compared to the wildtype TM cells. Moreover, the CAV1-KO TM cells had higher expression of extracellular matrix-degrading enzyme genes ( ADMTS13 and MMP14) as well as autophagy-related genes ( ATG7 and BECN1) and protein (LC3B-II) than the wildtype TM cells. In summary, results from this study showed that the CAV1-KO TM cells have reduced adhesion with higher extracellular matrix-degrading enzyme expression, but increased endocytosis and autophagy activities, indicating that CAV1 could be involved in the regulation of adhesion, endocytosis, and autophagy in human TM cells.  相似文献   

5.
A macrophage-like cell line (P388D1) has been used to demonstrate that glucocorticoids inhibit the fluid-phase endocytosis of fluorescein-labeled dextran (FITC-dextran). Initial experiments demonstrated that the interaction of FITC-dextran with cells had all the features of fluid-phase uptake, ie, the amount taken up was proportional to the concentration in the medium, the uptake proceeded continuously with time and was blocked at 4 degrees C. Dexamethasone (10(-7) M) had no effect on endocytosis until 11 hours after addition of the steroid, when it inhibited the uptake of FITC-dextran by 35%. The amount of inhibition increased with longer exposure times to the hormone up to 50% after 22 hours. Although this effect on endocytosis was observed prior to any effect on growth of the cells, endocytosis as well as cell proliferation were inhibited in a dose dependent fashion. A preliminary survey of selected steroids has established that the inhibition of endocytosis was restricted to steroids of the glucocorticoid class. The key experiments were also performed using horseradish peroxidase instead of FITC-dextran with, essentially, identical results.  相似文献   

6.
The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.  相似文献   

7.
The rate at which a membrane protein is internalized from the plasma membrane can be regulated by revealing a latent internalization signal in response to an appropriate stimulus. Internalization of the synaptic vesicle membrane protein, synaptotagmin 1, is controlled by two distinct regions of its intracytoplasmic C2B domain, an internalization signal present in the 29 carboxyterminal (CT) amino acids and a separate regulatory region. We have now characterized the internalization motif by mutagenesis and found that it involves an essential tryptophan in the last beta strand of the C2B domain, a region that is distinct from the AP2-binding site previously described. Internalization through the tryptophan-based motif is sensitive to eps15 and dynamin mutants and is therefore likely to be clathrin mediated. A tryptophan-to-phenylalanine mutation had no effect on internalization of the CT domain alone, but completely inhibited endocytosis of the folded C2B domain. This result suggests that recognition of sorting motifs can be influenced by their structural context. We conclude that endocytosis of synaptotagmin 1 requires a novel type of internalization signal that is subject to regulation by the rest of the C2B domain.  相似文献   

8.
Wang J  Wu Y  Hu H  Wang W  Lu Y  Mao H  Liu X  Liu Z  Chen BG 《Cellular immunology》2011,(1):39-44
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes.  相似文献   

9.
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin‐mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin‐associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N‐terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME‐deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony‐sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)‐dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin‐independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild‐type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1‐dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT‐dependent trafficking on endocytic recycling and the PM.  相似文献   

10.
AAK1, the adaptor-associated kinase 1, phosphorylates the μ2 subunit of AP2 and regulates the recruitment of AP2 to tyrosine-based internalization motifs found on membrane-bound receptors. AAK1 overexpression specifically inhibits the AP2-dependent internalization of transferrin receptor and LDL-receptor related protein by functionally sequestering AP2 (Conner and Schmid. J Cell Biol 2003; 162: 773). However, while AAK1 stably associates with AP2 and specifically targets the μ2 subunit in vitro , μ2 phosphorylation in vivo was not altered by overexpression of either wild-type or kinase-inactive AAK1. These results suggested that AAK1 might be tightly regulated in the cell. Here, we report that AAK1 is an atypical kinase that is rate limited by its stable association with AP2 and that clathrin stimulates μ2 phosphorylation by AAK1. Efficient stimulation of AAK1 by clathrin involves multiple interactions between several domains on AAK1 and both heavy and light chains on clathrin. Importantly, incubation of AAK1 with clathrin cages resulted in even greater stimulation when compared to that of unassembled clathrin triskelia. Collectively, our observations indicate that clathrin function is not limited to structural and/or mechanical roles in endocytic vesicle formation: the stimulatory effects of clathrin on AAK1 activity argue that it also plays a regulatory role by modulating the activity of AP2 complexes through activation of AAK1. We suggest a model in which AAK1 is specifically activated in coated pits to enhance cargo recruitment and efficient internalization.  相似文献   

11.
Summary Antidiuretic hormone increases the water permeability of the cortical collecting tubule and causes the appearance of intramembrane particle aggregates in the apical plasma membrane of principal cells. Particle aggregates are located in apical membrane coated pits during stimulation of collecting ducts with ADHin situ. Removal of ADH causes a rapid decline in water permeability. We evaluated apical membrane retrieval associated with removal of ADH by studying the endocytosis of horseradish peroxidase (HRP) from an isotonic solution in the lumen. HRP uptake was quantified enzymatically and its intracellular distribution examined by electron microscopy. When tubules were perfused with HRP for 20 min in the absence of ADH, HRP uptake was 0.5±0.3 pg/min/m tubule length (n=6). The uptake of HRP in tubules exposed continuously to ADH during the 20-min HRP perfusion period was 1.3±0.8 pg/min/m (n=8). HPR uptake increased markedly to 3.2±1.1 pg/min/m (n=14), when the 20-min period of perfusion with HRP began immediately after removal of ADH from the peritubular bath. Endocytosis of HRP occurred in both principal and intercalated cells via apical membrane coated pits. We suggest that the rapid decline in cortical collecting duct water permeability which occurs following removal of ADH is mediated by retrieval of water permeable membrane via coated pits.  相似文献   

12.
Maintenance of acetylcholine synthesis depends on the effective functioning of a high-affinity sodium-dependent choline transporter (CHT1). Recent studies have shown that this transporter is predominantly localized inside the cell, unlike other neurotransmitter transporters, suggesting that the trafficking of CHT1 to and from the plasma membrane may play a crucial role in regulating choline uptake. Here we found that CHT1 is rapidly and constitutively internalized in clathrin-coated vesicles to Rab5-positive early endosomes. CHT1 internalization is controlled by an atypical carboxyl-terminal dileucine-like motif (L531, V532) which, upon replacement by alanine residues, blocks CHT1 internalization in both human embryonic kidney 293 cells and primary cortical neurons and results in both increased CHT1 cell surface expression and choline transport activity. Perturbation of clathrin-mediated endocytosis with dynamin-I K44A increases cell surface expression and transport activity to a similar extent as mutating the dileucine motif, suggesting that we have identified the motif responsible for constitutive CHT1 internalization. Based on the observation that the localization of CHT1 to the plasma membrane is transient, we propose that acetylcholine synthesis may be influenced by processes that lead to the attenuation of constitutive CHT1 endocytosis.  相似文献   

13.
Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor   总被引:17,自引:0,他引:17  
A growth factor mitogenic for BALB/C 3T3 cells and capillary endothelial cells was isolated from a rat chondrosarcoma and purified to homogeneity. Purification was accomplished by a combination of BioRex 70 cation exchange chromatography and heparin affinity chromatography. The pure chondrosarcoma-derived growth factor (ChDGF) had a molecular weight of about 18,000. The angiogenesis activity of pure ChDGF was tested by measuring its ability to vascularize the chorioallantoic membrane (CAM) and yolk sac membrane of the developing chick. The ability of ChDGF to induce the growth of limbal vessels in the rat cornea was also measured. To quantitate the angiogenesis response, a unit system based on the growth factor activity of ChDGF for 3T3 cells was adopted. ChDGF was found to have a specific activity of about 5 units/ng when applied to 3T3 cells. About 300-600 units of ChDGF in the two types of developing chick membrane and 30-5 units of ChDGF in the rat cornea were found to stimulate noninflammatory angiogenesis.  相似文献   

14.
15.
16.
17.
Transfection of Rat1 fibroblasts with an activated form of rac1 (V12rac1) stimulated cell migration in vitro compared to transfection of Rat1 fibroblasts with vector only or with dominant negative rac1 (N17rac1). To investigate the involvement of proteases in this migration, we used a novel confocal assay to evaluate the ability of the Rat1 transfectants to degrade a quenched fluorescent protein substrate (DQ-green bovine serum albumin) embedded in a three-dimensional gelatin matrix. Cleavage of the substrate results in fluorescence, thus enabling one to image extracellular and intracellular proteolysis by living cells. The Rat1 transfectants accumulated degraded substrate intracellularly. V12rac1 increased accumulation of the fluorescent product in vesicles that also labeled with the lysosomal marker LysoTracker. Treatment of the V12rac1-transfected cells with membrane-permeable inhibitors of lysosomal cysteine proteases and a membrane-permeable selective inhibitor of the cysteine protease cathepsin B significantly reduced intracellular accumulation of degraded substrate, indicating that degradation occurred intracellularly. V12rac1 stimulated uptake of dextran 70 (a marker of macropinocytosis) and polystyrene beads (markers of phagocytosis) into vesicles that also labeled for cathepsin B. Thus, stimulation of the endocytic pathways of macropinocytosis and phagocytosis by activated Rac1 may be responsible for the increased internalization and subsequent degradation of extracellular proteins.  相似文献   

18.
We have investigated the stimulation of fluid phase endocytosis by epidermal growth factor (EGF) in normal human fibroblasts using 125I-labeled polyvinylpyrrolidone (125I-PVP) as a fluid phase marker. We found that EGF initially induced a thereefold increase in the rate of 125I-PVP uptake. This initial burst of fluid uptake terminated within 10 min. Thereafter, the rate of fluie uptake in EGF-treated cells was approximately 40% higher than in control cells. To identify the cellular site of EGF action in stimulating fluid phase endocytosis, we examined the kinetics of the induction of this response as well as the kinetics of cell surface binding and internalization of 125I-EGF. Although there was no detectable lag between binding of EGF to the cell surface and its internalization, the kinetics of the two processes were quite different. Significantly, the kinetics of induction of 125I-PVP uptake matched the kinetics of binding of 125I-EGF to its cell surface receptors, indicating that the signal for the increase in fluid phase endocytosis is generated at the cell surface. To determine if EGF-stimulated fluid phase endocytosis was related to EGF-stimulated endocytosis of its own receptor, we compared the EGF dose dependency and time course of the two processes. Although the stimulated endocytosis of the EGF receptor was not saturable with respect to the concentration of EGF used, the stimulation of fluid phase endocytosis was half maximal at an EGF concentration of 1 ng/ml and saturated at a concentration of 5 ng/ml. Also, the stimulation of fluid phase endocytosis was sevenfold greater initially after adding EGF than after a 30-min continuous incubation with the hormone, whereas the enhanced clearance of the EGF receptor did not change during this time period. We conclude that the EGF-stimulated increase in fluid phase endocytosis is not directly coupled to EGF-stimulated endocytosis of its own receptor but instead to a separate signal generated at the cell surface.  相似文献   

19.
Summary 1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-l-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.  相似文献   

20.
The normal human breast epithelial cell line, MCF10A, was used to investigate the mechanism by which high-density inhibits EGF-dependent cell cycle progression. EGF-dependent Akt activation was found to be transient in high-density cells and sustained in low-density cells. High-density cells also showed decreased EGF receptor (EGFR) autophosphorylation, decreased retinoblastoma protein phosphorylation, and increased p27 protein expression. Although EGFR activation was decreased in the high-density cells, the activation was sufficient to stimulate EGFR substrates comparable to low-density cells. EGF-dependent activation of the Erk1/2 pathway and the upstream activators of Akt (Gab1, erbB3, PI3 kinase, and PDK1) showed no density dependency. Antagonists of Akt activity provided further evidence that regulation of Akt activation is the critical signal transduction step controlling EGF-dependent cell cycle progression. Both adenovirus-mediated expression of dominant-negative Akt and inhibition of PI3 kinase-mediated Akt activation with LY294002 blocked cell cycle progression of low-density cells. In summary, we report the novel finding that high-density blocks EGF-dependent cell cycle progression by inhibiting EGF signaling at the level of EGF-dependent Akt activation rather than at the level of EGFR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号