首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Other studies have shown that inhalation of carbon tetrachloride (CCl4) decreases the amount of pulmonary surfactant lining the alveolar surface. Therefore, we studied the effects of CCl4 on the synthesis of surfactant phosphatidylcholines (PCs) in rat alveolar type II cells in vitro. The rate of incorporation of choline, palmitate or glycerol into disaturated PC (DSPC) is decreased in a concentration-dependent manner. The CCl4 concentrations which cause maximal inhibition and 50% inhibition are similar for each substrate. The rate of incorporation of choline or glycerol into total PC is diminished to the same extent as their incorporation into DSPC. In addition, the rate of incorporation of glycerol into phosphatidylglycerol is decreased by the same extent as its incorporation into PC. All of these data suggest that there is a common site(s) at which CCl4 inhibits PC synthesis and that the inhibition occurs early in the biosynthetic pathway. However, individual enzymes involved in phospholipid synthesis do not seem to be affected by the solvent. Exposure of alveolar type II cells to CCl4 does cause a rapid and dramatic loss in cellular ATP, a cofactor required by some enzymes involved in PC synthesis. Studies with isolated lung mitochondria suggest that CCl4 inhibits the enzyme complex which catalyzes the synthesis of ATP from ADP. In addition, CCl4 causes a decrease in the amount of 3-O-methylglucose associated with type II cells, suggesting that glucose influx is impaired. This may also contribute to lower cellular ATP levels. The results of this study suggest that inhalation of CCl4 may impair surfactant phospholipid synthesis by decreasing ATP levels in alveolar type II cells.  相似文献   

2.
Pulmonary surfactant conventionally is prepared from material obtained by endobronchial lavage. Although it has been assumed that the components of surfactant are secreted by alveolar type II cells, direct proof of this assumption has not been available. Furthermore, it is possible that the final material obtained by lavage has been modified after secretion or altered during the isolation procedure. It has been shown previously that type II cells, after 1 day in primary culture, secrete saturated phosphatidylcholine, one of the lipid components of surfactant. Because saturated phosphatidylcholine is not unique to surfactant and because type II cells in culture lose differentiated characteristics over the first several days in culture, it has not previously been established how closely the secretory products of cultures of type II cells resemble surfactant as obtained by endobronchial lavage. We therefore studied the morphologic, physical and chemical characteristics of the material that type II cells secrete under basal conditions and after stimulation with terbutaline or 12-O-tetradecanoyl-13-phorbol acetate. The secreted material resembled surfactant obtained by lavage; it was similar morphologically to the lamellar material and tubular myelin seen in the fluid-filled alveoli of fetal rats, it lowered surface tension to 5 mN per meter, and it contained the 72000 dalton apolipoprotein of surfactant (as measured by the 'rocket' immunoelectrophoresis technique). When cells were incubated for 22 h with [1-(14)C]acetate, the distribution of radioactivity in the secreted material was very similar to the phospholipid composition of rat surfactant. We conclude that the material secreted by alveolar type II cells after 1 day in primary culture is similar to surfactant obtained by endobronchial lavage.  相似文献   

3.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

4.
The effect of phosphatidylglycerol on the uptake of surfactant-like liposomes by alveolar type II cells and alveolar macrophages as well as the effect on endogenous surfactant function was studied in vivo. Healthy ventilated rats were intratracheally instilled with fluorescent labeled liposomes with different concentrations of phosphatidylglycerol. Lung function was determined by monitoring arterial oxygenation and, at the end of the experiment, by recording static pressure-volume curves. In addition, alveolar cells were isolated, and cell-associated fluorescence was determined using flow cytometry. The results show that, in the presence of cofactors (Ca(2+), Mg(2+)), phosphatidylglycerol stimulates the uptake by alveolar macrophages but hardly affects the uptake by alveolar type II cells. High concentrations of phosphatidylglycerol reduce the number of alveolar macrophages in the alveolar space and deteriorate lung function. On the other hand, the presence of cofactors protects the lung against the negative effects of phosphatidylglycerol on endogenous surfactant and alveolar macrophages. This study indicates that the phosphatidylglycerol concentration may play a fundamental role in the surfactant function and metabolism depending on the presence of so-called cofactors like calcium and magnesium; further study is needed to clarify the mechanisms involved.  相似文献   

5.
Pulmonary surfactant (PS) is an essential complex of lipids and specific proteins synthesized in alveolar type II pneumocytes, where it is assembled and stored intracellularly as multilayered organelles known as lamellar bodies (LBs). Once secreted upon physiological stimulation, LBs maintain a densely packed structure in the form of lamellar body-like particles (LBPs), which are efficiently transferred into the alveolar air-water interface, lowering surface tension to avoid lung collapse at end-expiration. In this work, the structural organization of membranes in LBs and LBPs freshly secreted by primary cultures of rat ATII cells has been compared with that of native lung surfactant membranes isolated from porcine bronchoalveolar lavage. PS assembles in LBs as crystalline-like highly ordered structures, with a highly packed and dehydrated state, which is maintained at supraphysiological temperatures. This relatively ordered/packed state is retained in secreted LBPs. The micro- and nanostructural examination of LBPs suggests the existence of high levels of structural complexity in comparison with the material purified from lavages, which may contain partially inactivated or spent structures. Additionally, freshly secreted surfactant LBPs exhibit superior activity when generating interfacial films and a higher intrinsic resistance to inactivating agents, such as serum proteins or meconium. We propose that LBs are assembled as an energy-activated structure competent to form very efficient interfacial films, and that the organization of lipids and proteins and the properties displayed by the films formed by LBPs are likely similar to those established at the alveolar interface and represent the actual functional structure of surfactant as it sustains respiration.  相似文献   

6.
The alveolar type II cell which synthesizes and secretes surfactant also plays a major role in the reuptake of surfactant lipids. In a recent in vivo study we found that the subfractions of natural surfactant that contained the surfactant protein with molecular weights of 26,000-36,000 (SP-26-36) were preferentially taken up into lamellar bodies of type II cells to a greater extent than were fractions that did not contain SP-26-36. Because the subfractions of natural surfactant in that study differed in other properties than the presence or absence of SP-26-36, the current study was undertaken to determine whether purified SP-26-36 enhanced the uptake of surfactant-like lipids by freshly isolated type II cells. SP-26-36 increased the uptake of label in radioactive surfactant-like lipids by up to 10-fold, and the effect of SP-26-36 was dependent on time, protein concentration, and temperature. The enhancement was inhibited by heat-treating the protein, by a polyclonal antibody against SP-26-36, and by metabolic inhibitors. The distribution of radioactivity in cell-associated phospholipids differed if cells were incubated with or without SP-26-36. If SP-26-36 was present during the incubation, greater than 96% of the radioactivity remained associated with phosphatidylcholine. In the absence of SP-26-36, only 85% of the radioactivity remained associated with phosphatidylcholine and 7% of the label appeared in phosphatidylglycerol. We hypothesize that SP-26-36 may act as a ligand to direct surfactant lipids to type II cells, perhaps to different metabolic pathways, and to regulate recycling and surfactant homeostasis.  相似文献   

7.
Surfactant protein A (SP-A): the alveolus and beyond.   总被引:6,自引:0,他引:6  
Surfactant protein A (SP-A) is the major protein component of pulmonary surfactant, a material secreted by the alveolar type II cell that reduces surface tension at the alveolar air-liquid interface. The function of SP-A in the alveolus is to facilitate the surface tension-lowering properties of surfactant phospholipids, regulate surfactant phospholipid synthesis, secretion, and recycling, and counteract the inhibitory effects of plasma proteins released during lung injury on surfactant function. It has also been shown that SP-A modulates host response to microbes and particulates at the level of the alveolus. More recently, several investigators have reported that pulmonary surfactant phospholipids and SP-A are present in nonalveolar pulmonary sites as well as in other organs of the body. We describe the structure and possible functions of alveolar SP-A as well as the sites of extra-alveolar SP-A expression and the possible functions of SP-A in these sites.  相似文献   

8.
Changes in pulmonary surfactant during bacterial pneumonia   总被引:2,自引:0,他引:2  
In pneumonia, bacteria induce changes in pulmonary surfactant. These changes are mediated by bacteria directly on secreted surfactant or indirectly through pulmonary type II epithelial cells. The bacterial component most likely responsible is endotoxin since gram-negative bacteria more often induce these changes than gram-positive bacteria. Also, endotoxin and gram-negative bacteria induce similar changes in surfactant. The interaction of bacteria or endotoxin with secreted surfactant results in changes in the physical (i.e. density and surface tension) properties of surfactant. In addition, gram-negative bacteria or endotoxin can injure type II epithelial cells causing them to produce abnormal quantities of surfactant, abnormal concentrations of phospholipids in surfactant, and abnormal compositions (i.e. type and saturation of fatty acids) of PC. The L/S ratio, the concentration of PG, and the amount of palmitic acid in PC are all significantly lower. The changes in surfactant have a deleterious effect on lung function characterized by significant decreases in total lung capacity, static compliance, diffusing capacity, and arterial PO2 and a significant increase in mean pulmonary arterial pressure. Also decreased concentrations of surfactant or an altered surfactant composition can result in the anatomic changes commonly seen in pneumonia such as pulmonary edema, hemorrhage, and atelectasis.Abbreviations BAL Bronchoalveolar lavage - LPS lipopolysaccharide - PC phosphatidylcholine - PG phosphatidylglycerol - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - LPC lysophosphatidylcholine - SPH sphingomyelin - DPPC dipalmitoylphosphatidylcholine - L/S lecithin/sphingomyelin  相似文献   

9.
Type II alveolar epithelia produce, store and secrete pulmonary surfactant, a phospholipid and protein mixture which stabilizes alveoli at low lung volumes and, thereby, prevents alveolar collapse. We determined the developmental changes in the uptake, metabolism and reutilization of surfactant-related phospholipid in primary cultures of type II cells derived from fetal rat lung. Primary cultures of fetal and neonatal type II cells were incubated in media containing labelled liposomes. After the incubation phospholipids were extracted from the cells and uptake of label was analyzed. Re-uptake of radiolabelled dipalmitoyl phosphatidylcholine (DPPC) was concentration-dependent in undifferentiated fetal cells, differentiated fetal cells and neonatal cells. Re-uptake of DPPC by undifferentiated fetal cells was lower than re-uptake by both differentiated fetal and neonatal cells at 15 and 75 μM PC. Binding of DPPC to the cell surface involved a protein interaction, since trypsin was able to dissociate this trypsin-releasable fraction from internalized label. Undifferentiated fetal, differentiated fetal and neonatal cells all exhibited approx. 50% metabolic degradation of internalized phospholipid. Degraded lipids were reutilized in the synthesis of phosphatidylglycerol, but neonatal cells resynthesized twice as much phosphatidylglycerol as did undifferentiated fetal cells. These are the first studies which show that morphologically undifferentiated fetal type II cells are capable of the uptake of surfactant phospholipid as well as the degradation and reutilization of internalized phospholipid. Re-uptake, degradation and reutilization of internalized phospholipid appear to be under developmental control.  相似文献   

10.
Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.  相似文献   

11.
We studied the synthesis of disaturated phosphatidylcholines in rat alveolar macrophages and, in some cases, compared it with that which occurs in isolated alveolar type II cells. Alveolar macrophages suspended in phosphate-buffered medium incorporate palmitate, choline and glycerol into disaturated phosphatidylcholines. The time-course for incorporation of palmitate into disaturated phosphatidylcholines is linear for 20-30 min and reaches a maximum in 2-3 h. Incorporation is dependent on extracellular palmitate with a Vmax (at 1 mM) of 1.53 nmol palmitate incorporated into disaturated phosphatidylcholines per 5 X 10(5) cells per 2 h and a K 1/2 of 0.19 mM palmitate. Exposure of the cells to zymosan particles increases incorporation of palmitate disaturated phosphatidylcholines by almost 2-fold, while cholinergic and beta-adrenergic agonists have no effect. On a per cell basis, alveolar macrophages incorporate only one-third to one-half as much palmitate into disaturated phosphatidylcholines as do type II cells isolated by centrifugal elutriation. The following results suggest there is extensive remodeling of disaturated phosphatidylcholines in alveolar macrophages: (1) palmitate- and choline-labeled disaturated phosphatidylcholines are catabolized by the cells; (2) the products of catabolism are palmitate and water-soluble choline products; (3) addition of unlabeled palmitate and choline to the medium enhances catabolism of the labeled phospholipid. Addition of oleate also enhances catabolism, suggesting that modification of phospholipids is not specific for the saturated variety. Some of the recently labeled disaturated phosphatidylcholines is released from alveolar macrophages into the extracellular space. Several possible functions of alveolar macrophage disaturated phosphatidylcholines are discussed.  相似文献   

12.
Pulmonary surfactant is a mixture of lipids and proteins which is secreted by the epithelial type II cells into the alveolar space. Its main function is to reduce the surface tension at the air/liquid interface in the lung. This is achieved by forming a surface film that consists of a monolayer which is highly enriched in dipalmitoylphosphatidylcholine and bilayer lipid/protein structures closely attached to it. The molecular mechanisms of film formation and of film adaptation to surface changes during breathing in order to remain a low surface tension at the interface, are unknown. The results of several model systems give indications for the role of the surfactant proteins and lipids in these processes. In this review, we describe and compare the model systems that are used for this purpose and the progress that has been made. Despite some conflicting results using different techniques, we conclude that surfactant protein B (SP-B) plays the major role in adsorption of new material into the interface during inspiration. SP-C's main functions are to exclude non-DPPC lipids from the interface during expiration and to attach the bilayer structures to the lipid monolayer. Surfactant protein A (SP-A) appears to promote most of SP-B's functions. We describe a model proposing that SP-A and SP-B create DPPC enriched domains which can readily be adsorbed to create a DPPC-rich monolayer at the interface. Further enrichment in DPPC is achieved by selective desorption of non-DPPC lipids during repetitive breathing cycles.  相似文献   

13.
One of the key functions of mammalian pulmonary surfactant is the reduction of surface tension to minimal values. To fulfill this function it is expected to become enriched in dipalmitoylphosphatidylcholine either on its way from the alveolar type II pneumocytes to the air/water interface of the lung or within the surface film during compression and expansion of the alveoli during the breathing cycle. One protein that may play a major role in this enrichment process is the surfactant protein B. The aim of this study was to identify the lipidic interaction partner of this protein. Time-of-flight secondary ion mass spectrometry was used to analyze the lateral distribution of the components in two SP-B-containing model systems. Either native or partly isotopically labeled lipids were analyzed. The results of both setups give strong indications that, at least under the specific conditions of the chosen model systems (e.g., concerning pH and lipid composition), the lipid interacting with surfactant protein B is not phosphatidylglycerol as generally accepted, but dipalmitoylphosphatidylcholine instead.  相似文献   

14.
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length.  相似文献   

15.
16.
Pulmonary surfactant is synthesized and secreted by pulmonary alveolar type II epithelial cells (type II cells). It passes through the alveolar lining fluid and adsorbs to the air-liquid interface. The process from secretion to adsorption is not yet entirely understood. To acquire a detailed understanding of this process, we used multiple observations of type II cells isolated from rat lungs under electron microscopy (EM) and confocal laser scanning microscopy (CLSM). Transmission EM observation demonstrated a loosening process of the intracellular lamellar bodies from the inside to the outside of the cell. Scanning EM observation revealed bubble-like protrusions from the cell surface, and differential interference contrast microscopy illustrated the protrusions expanding with time. CLSM observation with FM 1–43, a fluorescent membrane probe, revealed that the bubble-like protrusions were composed of phospholipids. Thus, we have demonstrated that isolated rat type II cells protrude intracellular lamellar bodies by forming bubble-like structures, possibly enabling them to adsorb to the air-liquid interface directly. These observations suggest a new mechanism for surfactant secretion from type II cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Pulmonary surfactant is secreted by alveolar type II cells as lipid-rich, densely packed lamellar body-like particles (LBPs). The particulate nature of released LBPs might be the result of structural and/or thermodynamic forces. Thus mechanisms must exist that promote their transformation into functional units. To further define these mechanisms, we developed methods to follow LBPs from their release by cultured cells to insertion in an air-liquid interface. When released, LBPs underwent structural transformation, but did not disperse, and typically preserved a spherical appearance for days. Nevertheless, they were able to modify surface tension and exhibited high surface activity when measured with a capillary surfactometer. When LBPs inserted in an air-liquid interface were analyzed by fluorescence imaging microscopy, they showed remarkable structural transformations. These events were instantaneous but came to a halt when the interface was already occupied by previously transformed material or when surface tension was already low. These results suggest that the driving force for LBP transformation is determined by cohesive and tensile forces acting on these particles. They further suggest that transformation of LBPs is a self-regulated interfacial process that most likely does not require structural intermediates or enzymatic activation.  相似文献   

18.
In order to study synthesis of pulmonary surfactant materials, we measured incorporation of [3H]palmitate into disaturated phosphatidylcholines (PC) in alveolar type II cells isolated by centrifugal elutriation. The time course for this process is not linear and, at high external palmitate levels (1 mM), incorporation is maximal in 4-5 h. Incorporation is dependent on extracellular palmitate with a Vmax (at 1 mM) of 1.66 nmol palmitate incorporated into disaturated PC/4.2 X 10(5) cells per 2 h and a K1/2 of 0.1 mM palmitate. Addition of an optimal amount of extracellular choline (0.05 mM) increases Vmax and decreases K1/2 for palmitate. Incorporation of palmitate is dependent upon cell number, inhibited by extracellular Ca2+ and stimulated by external Mg2+. Cholinergic and beta-adrenergic agonists do not increase incorporation. Pulmonary lavage fluid inhibits incorporation of palmitate into disaturated PC, suggesting there is negative feedback involved. Disaturated PC which has been recently synthesized (i.e., over a 2 h period) is broken down intracellularly by type II cells when they are suspended in palmitate-free medium. These results indicate that (1) several factors, such as substrate levels, cell number, Ca2+, Mg2+ and amount of surfactant present, are involved in the regulation of palmitate incorporation into disaturated PC; (2) disaturated PC which has been recently synthesized may be broken down by type II cells; and (3) surfactant synthesis in freshly isolated cells differs slightly from that reported by other investigators in type II cells maintained in primary cell culture.  相似文献   

19.
Pulmonary alveolar type II cells synthesize, secrete, and recycle the components of pulmonary surfactant. In this report we present evidence that dipalmitoylphosphatidylcholine is a potent inhibitor of surfactant lipid secretion by type II cells. Monoenoic and dienoic phosphatidylcholines with fatty acids of 16 or 18 carbons are ineffective as inhibitors of surfactant lipid secretion. In contrast, disaturated phosphatidylcholines, with either symmetric or asymmetric pairs of fatty acids of 14, 16, or 18 carbons, exhibit inhibition of surfactant secretion that correlates extremely well with the phase transition temperature (Tc) of the phospholipid. The inhibitory activity of dipalmitoylphosphatidylcholine is not dependent upon lipid stereochemistry. N-Methylated derivatives of dipalmitoylphosphatidylethanolamine are significantly less effective than phosphatidylcholine as inhibitors. Phosphatidylcholines below their phase transition temperature are inhibitors of surfactant secretion, whereas those above their phase transition temperature are either ineffective or weakly inhibitory. The phase transition dependence of inhibition is observed when type II cells are incubated at 37 degrees C with different species of phosphatidylcholine. In addition, if type II cells are stimulated to secrete at different temperatures the efficacy of a given phospholipid as an inhibitor is dependent on its relationship to Tc (i.e. dipalmitoylphosphatidylcholine with a Tc of 41 degrees C significantly inhibits secretion at 37 degrees C but not at 42 degrees C). Inhibition of surfactant secretion by dipalmitoylphosphatidylcholine is abrogated when it is incorporated into the same liposome with dioleoylphosphatidylcholine as a 50:50 mixture. In contrast, the simultaneous addition of two separate populations of liposomes, one composed of dipalmitoylphosphatidylcholine and the other composed of dioleoylphosphatidylcholine, does not significantly alter the inhibitory activity found with dipalmitoylphosphatidylcholine alone. These data provide compelling evidence that the physical state of phosphatidylcholine can regulate surfactant secretion from alveolar type II cells and suggest a unique mechanism for regulating exocytosis in the alveolus of the lung.  相似文献   

20.
It is generally believed that lung alveoli contain an extracellular aqueous layer of surfactant material, which is allegedly required to prevent alveolar collapse at small lung volume; the surfactant's major constituent is a fully saturated phospholipid, referred to as dipalmitoyl lecithin or DPL. I herein demonstrate that the surfactant hypothesis of alveolar stability is fundamentally wrong. Although DPL is synthesized inside type II epithelial cells and stored in the typical inclusion bodies therein and lowers surface tension to zero in the surface balance, there is no evidence to the effect that type II cells secrete the DPL surfactant into the aqueous intra-alveolar layer which is shown by electron microscopy in support of the surfactant theory. To the contrary, all the evidence indicates that, when seen, such an extracellular layer is an artifact. This is probably upon the damage glutaraldehyde inflicts onto alveolar structures during fixation of air-inflated lung tissue. Furthermore, several cogent arguments invalidate the belief that an extracellular layer of DPL and serum proteins is present in the alveoli of normal lung. In light of these arguments, a surface tension role of DPL in alveolar stability is excluded. Three hypotheses for an alternative role of DPL in respiration mechanics are proposed. They are: (a) alveolar clearance by viscolytic and surfactant action (bubble or foam formation) on the aqueous systems which are present in lung alveoli during edema and in prenatal life and which would otherwise be impervious to air; (b) homeostasis of blood palmitate in normal lung; (c) modulation of the elasticity of terminal lung tissue by the intact inclusion bodies and parts thereof inside type II cells in normal lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号