首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cardiac contractile function is dependent on the integrity and function of the sarcolemmal membrane. Swimming exercise training is known to increase cardiac contractile performance. The purpose of the present study was to examine whether a swimming exercise program would alter sarcolemmal enzyme activity, ion flux, and composition in rat hearts. After approximately 11 wk of exercise training, cardiac myosin and actomyosin Ca2+-adenosinetriphosphatase (ATPase) activity was significantly higher in exercised rat hearts than in sedentary control rat hearts. Glycogen content was increased in plantaris and gastrocnemius muscles from exercised animals as was succinic dehydrogenase activity in gastrocnemius muscle of exercised rats in comparison to sedentary rat preparations. Sarcolemmal vesicles were isolated from hearts of exercise-trained and control rats. Sarcolemmal Na+-K+-ATPase and K+-p-nitrophenylphosphatase activities, Na+-Ca2+ exchange, and passive Ca2+ binding did not differ between the two groups. ATP-dependent Ca2+ uptake and 5'-nucleotidase activity were elevated in the cardiac sarcolemmal vesicles isolated from exercised animals compared with sedentary control rats. Sarcolemmal phospholipid composition was not altered by the exercise training. Our results demonstrate that swimming training in rats does not affect most parameters of cardiac sarcolemmal function or composition. However, the elevated sarcolemmal Ca2+ pump activity in exercised rats may help to reduce intracellular Ca2+ and augment cardiac relaxation rates. The enhanced 5'-nucleotidase activity may stimulate adenosine production, which could affect myocardial blood flow. The present results further our knowledge on the subcellular response of the heart to swimming training in the rat.  相似文献   

3.
Ca2+ signaling in skeletal and cardiac muscles is a bi-directional process that involves cross-talk between signaling molecules in the sarcolemmal membrane and Ca2+ release machinery in the intracellular organelles. Maintenance of a junctional membrane structure between the sarcolemmal membrane and the sarcoplasmic reticulum (SR) provides a framework for the conversion of action potential arrived at the sarcolemma into release of Ca2+ from the SR, leading to activation of a variety of physiological processes. Activity-dependent changes in Ca2+ storage inside the SR provides a retrograde signal for the activation of store-operated Ca2+ channel (SOC) on the sarcolemmal membrane, which plays important roles in the maintenance of Ca2+ homeostasis in physiology and pathophysiology. Research progress during the last 30 years had advanced our understanding of the cellular and molecular mechanisms for the control of Ca2+ signaling in muscle and cardiovascular physiology. Here we summarize the functions of three key molecules that are located in the junctional membrane complex of skeletal and cardiac muscle cells: junctophilin as a "glue" that physiologically links the SR membrane to the sarcolemmal membrane for formation of the junctional membrane framework, mitsugumin29 as a muscle-specific synaptophysin family protein that contributes to maintain the coordinated Ca2+ signaling in skeletal muscle, and TRIC as a novel cation-selective channel located on the SR membrane that provides counter-ion current during the rapid process of Ca2+ release from the SR.  相似文献   

4.
The functional capacity of skeletal muscle sarcoplasmic reticulum (SR) was examined in the slow soleus of rats submitted to 15 days of disuse produced by hindlimb suspension (HS). By using caffeine-induced contractions of single skinned fibers, Ca2+ uptake, Ca2+ release, and passive Ca2+ leakage through the SR membrane were investigated. In the SR of atrophied muscles, the amounts of Ca2+ uptake and Ca2+ release were significantly higher than in the control muscles and were close to those found for a fast muscle, the plantaris. Moreover, the study of the Ca2+ leakage showed that the time required to empty the SR previously loaded with Ca2+ was reduced by a factor of two after HS. Such disturbances of the Ca2+ movements in the SR suggested that alterations of the SR membrane occurred after HS. The results supported the idea that after hindlimb unweighting the slow soleus muscle acquired SR properties that were very much like those of a faster muscle.  相似文献   

5.
Endurance capacity and the effects of different post-exercise states on skeletal muscle glycogen have been studied in rats trained by swimming or running and in sedentary controls. Regular endurance exercise resulted in increased skeletal muscle glycogen stores. A greater depletion was observed in trained animals than in non-trained animals after a training bout or exhaustive exercise. While muscle glycogen levels did not reflect a differential training stimulus (running vs swimming), swimming as a measure of exhaustive exercise was deemed invalid because of the ability of trained swimmers to avoid stenuous exercise by an alteration of swimming pattern.  相似文献   

6.
Several different exercise regimens varied in the severity of tissue damage induced. Therefore, this study investigated the effects of a single bout of exercise versus endurance training in heart and skeletal muscles with different predominant fiber types on indices of mitochondrial, endoplasmic reticulum (ER) integrity and protein degradation. Male Wistar rats performed different treadmill exercise protocols: exhaustive, maximal exhaustive, eccentric, training and exhaustive exercise after training. The maximal and eccentric exercises resulted in a significant loss of integrity of the sarcoplasmic and ER muscle, while no changes were observed in cardiac muscle. Mitochondrial membrane fluidity measured by the fluorescence polarization method was significantly increased post-acute exercises in heart and oxidative muscles. Regular exercise can stabilize and preserve the viscoelastic nature of mitochondrial membranes in both tissues. The highest increase in carbonyl content was obtained in heart after exhaustive exercise protocol, from 1+/-0.1 to 3.6+/-0.14 nmol mg protein(-1), such increase were not found after regular exercise with values significantly decreased. Nitrate heart levels showed attenuated generation of nitric oxide after training. Muscle protein oxidation was produced in all exhaustive exercises including eccentric exercise.  相似文献   

7.
Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determine whether prevention of skeletal muscle glycogen supercompensation after exercise results in maintenance of the increases in GLUT4 and the capacity for glycogen supercompensation. Rats were exercised by means of three daily bouts of swimming. GLUT4 mRNA was increased approximately 3-fold and GLUT4 protein was increased approximately 2-fold 18 h in epitrochlearis muscle after exercise. These increases in GLUT4 mRNA and protein reversed completely within 42 h after exercise in rats fed a high-carbohydrate diet. In contrast, the increases in GLUT4 protein, insulin-stimulated glucose transport, and increased capacity for glycogen supercompensation persisted unchanged for 66 h in rats fed a carbohydrate-free diet that prevented glycogen supercompensation after exercise. GLUT4 mRNA was still elevated at 42 h but had returned to baseline by 66 h after exercise in rats fed the carbohydrate-free diet. Glycogen-depleted rats fed carbohydrate 66 h after exercise underwent muscle glycogen supercompensation with concomitant reversal of the increase in GLUT4. These findings provide evidence that prevention of glycogen supercompensation after exercise results in persistence of exercise-induced increases in GLUT4 protein and enhanced capacity for glycogen supercompensation.  相似文献   

8.
The aim of this review is to summarize some current concepts on the membrane mechanisms of energy-dependent Ca2+ transport in the smooth muscles. The emphasis is placed on the properties and mechanisms of regulation of plasma membrane and endoplasmic reticulum calcium pumps, sarcolemmal sodium/calcium exchanger and mitochondrial Ca2+ transport.  相似文献   

9.
The relationships between exercise and metabolites as well as between exercise and sarcoplasmic reticulum function were studied in gastrocnemius muscle of ovariectomized-trained rats. Prolonged moderate-intensity exercise, treadmill up-hill run for 90 min with a 10 degree incline, decreased the muscle glycogen content. Exercise until exhaustion further lowered the glycogen concentration to 13% of the control, together with a significant decrease of ATP and glucose-6-phosphate concentrations. Also, Ag+-induced Ca2+ release, measured in whole muscle homogenate, showed a 30% reduction on exhaustion, while Ca2+ uptake was unaffected by this exercise. ATPase activities, of both homogenate and SR vesicles, and Ca2+ transport in the latter preparation were not altered on exhaustion. It could be concluded from these results that muscular fatigue in ovariectomized rats after aerobic exercise is caused by the change in energy supply and Ca2+ release from the SR, this latter possibly due to metabolites generated by the exercise.  相似文献   

10.
Summary To elucidate the role of muscle glycogen storage on regulation of GLUT4 protein expression and whole-body glucose tolerance, muscle glycogen level was manipulated by exercise and insulin administration. Sixty Sprague-Dawley rats were evenly separated into three groups: control (CON), immediately after exercise (EX0), and 16 h after exercise (EX16). Rats from each group were further divided into two groups: saline- and insulin-injected. The 2-day exercise protocol consisted of 2 bouts of 3-h swimming with 45-min rest for each day, which effectively depleted glycogen in both red gastrocnemius (RG) and plantaris muscles. EX0 rats were sacrificed immediately after the last bout of exercise on second day. CON and EX16 rats were intubated with 1 g/kg glucose solution following exercise and recovery for 16 h before muscle tissue collection. Insulin (0.5 μU/kg) or saline was injected daily at the time when glucose was intubated. Insulin injection elevated muscle glycogen levels substantially in both muscles above saline-injected group at CON and EX16. With previous day insulin injection, EX0 preserved greater amount of postexercise glycogen above their saline-injected control. In the saline-injected rats, EX16 significantly increased GLUT4 protein level above CON, concurrent with muscle glycogen supercompensation. Insulin injection for EX16 rats significantly enhanced muscle glycogen level above their saline-injected control, but the increases in muscle GLUT4 protein and whole-body glucose tolerance were attenuated. In conclusion, the new finding of the study was that glycogen overload by postexercise insulin administration significantly abolished the exercise-induced increases in GLUT4 protein and glucose tolerance.  相似文献   

11.
Yang T  Huang QY  Shan FB  Guan LB  Cai MC 《生理学报》2012,64(2):193-198
The present study was aimed to explore the changes of phosphorylated AMP-activated protein kinase (pAMPK) level in skeletal muscle after exposure to acute hypobaric hypoxia and exhaustive exercise. Thirty-two male Sprague-Dawley (SD) rats were randomly divided into sea level and high altitude groups. The rats in high altitude group were submitted to simulated 5 000 m of high altitude in a hypobaric chamber for 24 h, and sea level group was maintained at normal conditions. All the rats were subjected to exhaustive swimming exercise. The exhaustion time was recorded. Before and after the exercise, blood lactate and glycogen content in skeletal muscle were determined; AMPK and pAMPK levels in skeletal muscle were detected by Western blot. The results showed that the exhaustion time was significantly decreased after exposure to high altitude. At the moment of exhaustion, high altitude group had lower blood lactate concentration and higher surplus glycogen content in gastrocnemius compared with sea level group. Exhaustive exercise significantly increased the pAMPK/AMPK ratio in rat skeletal muscles from both sea level and high altitude groups. However, high altitude group showed lower pAMPK/AMPK ratio after exhaustion compared to sea level group. These results suggest that, after exposure to acute hypobaric hypoxia, the decrement in exercise capacity may not be due to running out of glycogen, accumulation of lactate or disturbance in energy status in skeletal muscle.  相似文献   

12.
It is shown that in case of antioxidant insufficiency (AOI) activation of NADPH- and ascorbate-dependent lipid peroxidation (LPO) in sarcoplasmic reticulum (SR) of skeletal muscles proceeds 1.7 and 4.1 times faster, respectively. Activation of lipid peroxidation in AOI leads to damage of Ca2+ transport processes in SR of skeletal muscles. Under these conditions ATP-dependent accumulation of 45Ca (by 88%) and Ca(2+)-ATPase (by 14%) activity in SR of skeletal muscles falls. In case of AOI a significant disturbance of passive Ca2+ transport in SR of skeletal muscles takes place, being characterized by an increased passive 45Ca output from vesicles due to breakage of the biomembrane permeability as a result of lipid peroxidation of membranes. Treatment of animals with ionol, a synthetic antioxidant, causes a decrease of activated NADPH- and ascorbate-dependent LPO in SR of skeletal muscles and stabilization of Ca2+ transport processes.  相似文献   

13.
为探讨金属硫蛋白(MT)在运动提高机体自我贩作用,本文实验观察了游泳运动对大鼠心、肝、肺、脑、血管、因浆和骨骼肌等组织金属硫蛋白含量的影响。结果表明耐力训练组大鼠心、肝、肺和骨骼组织金属硫蛋白含量较政党对照组明显降低13-34%(P〈0.05);急性力竭运动组大鼠心、肝、脑、肺和骨骼肌组织其含量较正常对照则明显或高21-75%(P〈0.05);但两组大鼠血管和血浆MT含量变化与对照组大鼠要比无统计  相似文献   

14.
耗竭性游泳对大鼠心肌线粒体膜功能的影响   总被引:22,自引:0,他引:22  
耗竭性游泳对大鼠心肌线粒体膜功能的影响王文信,丁树哲,许豪文(华东师范大学体育系运动生化实验室,上海200062)关键词心肌线粒体,内膜表面电位,游离钙,总钙,合成活力长时间耗竭性游泳或跑步引起心肌、骨骼肌、肝脏等线粒体结构和功能变化,这些变化可能与...  相似文献   

15.
The UM-X7.1 myopathic and control hamsters at 40, 120 and 280 days of age were employed for the examination of heart sarcolemmal Ca2+-transport activities. Na+-dependent Ca2+ uptake activities were significantly depressed in myopathic animals at 120 and 280 days of age in comparison to the control values. No difference in Na+-induced Ca2+ release activities was found between control and experimental sarcolemmal vesicles. ATP-dependent Ca2+ binding and Ca2+-stimulated, Mg2+ ATPase activities were depressed in the experimental animals at 120 and 280 days of age. Similar alterations in the sarcolemmal Na+-dependent Ca2+ exchange and Ca2+-pump activities were seen upon treating the control hamsters with 40 mg/kg isoproterenol for 24 hr. It is suggested that a depression in the sarcolemmal Ca2+ transport activities may contribute to the development of intracellular Ca2+ overload in the genetically determined cardiomyopathy in hamsters and such a defect may be due to excessive amount circulating catecholamines in these animals.  相似文献   

16.
为探讨金属硫蛋白(MT)在运动提高机体自我保护能力方面的作用,本实验观察了游泳运动对大鼠心、肝、肺、脑、血管、血浆和骨骼肌等7种组织金属硫蛋白含量的影响。结果表明耐力训练组大鼠心、肝、肺和骨骼肌组织金属硫蛋白含量较正常对照组明显降低13-34%(P<0.05);急性力竭运动组大鼠心、肝、脑、肺和骨骼肌组织其含量较正常对照组则明显升高21-75%(P<0.05);但两组大鼠血管和血浆MT含量变化与对照组大鼠相比无统计学意义(P<0.05)。推测各组织金属硫蛋白在不同运动形式下的不同变化可能在运动提高机体自我保护能力方面具有积极意义。  相似文献   

17.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

18.
In order to understand the mechanisms of exercise intolerance and muscle fatigue, which are commonly observed in congestive heart failure, we studied sarcoplasmic reticulum (SR) Ca(2+)-transport in the hind-leg skeletal muscle of rats subjected to myocardial infarction (MI). Sham-operated animals were used for comparison. On one hand, the maximal velocities (Vmax) for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities in skeletal muscle of rats at 8 weeks of MI were higher than those of controls. On the other hand, the Vmax values for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities were decreased significantly at 16 weeks of MI when compared with controls. These alterations in Ca(2+)-transport activities were not associated with any change in the affinity (1/Ka) of the SR Ca(2+)-pump for Ca2+. Furthermore, the stimulation of SR Ca(2+)-stimulated ATPase activity by cyclic AMP-dependent protein kinase was not altered at 8 or 16 weeks of MI when compared with the respective control values. Treatment of 3-week infarcted animals with angiotensin-converting enzyme (ACE) inhibitors such as captopril, imidapril, and enalapril or an angiotensin receptor (AT1R) antagonist, losartan, for a period of 13 weeks not only attenuated changes in left ventricular function but also prevented defects in SR Ca(2+)-pump in skeletal muscle. These results indicate that the skeletal muscle SR Ca(2+)-transport is altered in a biphasic manner in heart failure due to MI. It is suggested that the initial increase in SR Ca(2+)-pump activity in skeletal muscle may be compensatory whereas the depression at late stages of MI may play a role in exercise intolerance and muscle fatigue in congestive heart failure. Furthermore, the improvements in the skeletal muscle SR Ca(2+)-transport by ACE inhibitors may be due to the decreased activity of renin-angiotensin system in congestive heart failure.  相似文献   

19.
Micromolar concentrations of HOCl, an oxidant produced by activated neutrophils, inhibited Ca2+ uptake and Ca2+ATPase of isolated dog heart sarcoplasmic reticulum (SR). DTT antagonized completely the HOCl effect only when it was given within 5 min after the addition of HOCl. When the pharmacological intervention was delayed, the recovery with DTT was not complete, and administration of DTT 30 min after the start of HOCl's reaction with SR resulted in only a small improvement in SR Ca2+ uptake. Although H2O2 and Fe ion-chelate (a free radical-generating procedure) also inhibited Ca2+ uptake and ATPase, the concentrations required were very large. The response of cardiac sarcolemmal and skeletal muscle SR calcium pumps to oxidants was similar to that of the cardiac SR calcium pump.  相似文献   

20.
Stimulation of AMPK and decreased glycogen levels in skeletal muscle have a deep involvement in enhanced insulin action and GLUT-4 protein content after exercise training. The present study examined the chronic effects of a continuous low-carbohydrate diet after long-term exercise on GLUT-4 protein content, glycogen content, AMPK, and insulin signaling in skeletal muscle. Rats were divided randomly into four groups: normal chow diet sedentary (N-Sed), low carbohydrate diet sedentary (L-Sed), normal chow diet exercise (N-Ex), and low carbohydrate diet exercise (L-Ex) groups. Rats in the exercise groups (N-Ex and L-Ex) were exercised by swimming for 6 hours/day in two 3-hour bouts separated by 45 minutes of rest. The 10-day exercise training resulted in a significant increase in the GLUT-4 protein content (p<0.01). Additionally, the GLUT-4 protein content in L-Ex rats was increased by 29% above that in N-Ex rats (p<0.01). Finally, the glycogen content in skeletal muscle of L-Ex rats was decreased compared with that of N-Ex rats. Taken together, we suggest that the maintenance of glycogen depletion after exercise by continuous low carbohydrate diet results in the increment of the GLUT-4 protein content in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号